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ABSTRACT: Inspired by the exact form of the strongly interacting limit of
density functional theory, Vuckovic and Gori-Giorgi have recently proposed
[J. Phys. Chem. Lett. 2017, 8, 2799] the multiple radii functional (MRF), a
new framework for the construction of exchange-correlation (xc) energy
approximations able to describe strong correlation electronic effects. To
facilitate the construction of improved approximations based on the MRF
functional, in the present work we use reverse engineering strategies to reveal
the forms of the MRF functional which reproduce the exact xc functional for
small atoms. Using the adiabatic connection representation of the xc
functional, we also develop an interpolation form which uses xc energy
densities from the physical, weakly and strongly interacting regimes as input
ingredients. We discuss how this interpolation form can be used for recovering the presently missing kinetic component of the
correlation energy in the MRF framework and we asses its accuracy using highly accurate ingredients for small atoms. Applying
the same interpolation form to LiH along the dissociation curve, we highlight its advantages over previous adiabatic connection-
based models for the treatment of strong correlation.

1. INTRODUCTION
With an accuracy that is often competitive with much more
expensive wave function methods, Kohn−Sham Density
Functional Theory (KS DFT)1 is the most employed method
in electronic structure calculations.2−4 KS DFT is in principle
an exact theory, but in practice it relies on approximations to
its key quantity, the exchange-correlation (xc) functional.
Mainstream strategies for the construction of density func-
tional approximations (DFAs) to the xc functional follow the
Jacob’s ladder approach.3,5−7 For moderately and weakly
correlated systems and processes, state-of-the-art DFAs based
on the Jacob’s ladder approach are very close to reaching the
desired chemical accuracy.8 Despite this widespread success,
accurate treatment of systems in which electronic correlation
plays a prominent role (strong correlation) remains an
unsolved challenge for DFAs.2,9 This, in turn, hinders the
applicability and predictive power of DFT methods due to the
importance of strong correlation effects in chemical reactivity
and the chemistry of transition metals.
A possible way forward for addressing the long-standing

problem of strong correlation in DFT is to use the
mathematics of the strongly interacting limit (SIL) of DFT
as a guide for the construction of a new generation of DFAs.
This limit had been proposed by Seidl10−12 and has been
carefully studied over the past decade mainly by Gori-Giorgi
and co-workers.13−16 Instead of traditional Jacob’s ladder
ingredients (semilocal quantities and Kohn−Sham orbitals),5

certain integrals of the density encoding fully nonlocal
information play the key role in the SIL.10,13,14,16 Vuckovic
and Gori-Giorgi have very recently constructed a whole new
DFT framework by rescaling and simplifying the mathematical
structure of the exact SIL. They have used integrals of the

density, as the key structural motif of their framework, to
reconstruct two-body quantities at the physical regime, in a
way that is inspired by the exact SIL mathematics. Such an
approach, named the multiple radii functional (MRF) is well-
equipped for addressing long-standing problems in DFT: it is
by-construction self-interaction free, and it captures the right
physics of chemical bond dissociation.17 In a physically
appealing way, MRF models the pair-density in terms of
multiple ef fective electronic distances or radii, which deliver the
properly normalized xc hole. The MRF xc energy densities
defined in terms of the xc hole also have the correct asymptotic
behavior.
In the present paper we analyze several features of the MRF

functional and lay the foundation for its further development.
To test and explore how the proposed MRF approximation for
the electron repulsion energy17 can be improved, we reverse
engineer the MRF objects to reproduce highly accurate energy
densities of two-electron systems. We also use the MRF
quantities that measure effective distance between electrons to
analyze features of other approximate xc energy densities
defined within the conventional DFT definition (the one
arising from the electrostatic potential of the xc hole18,19). We
also consider a simplification of the MRF objects that allows
their reverse engineering in a way that they reproduce a given
input xc energy density for systems with any electron number.
This simplification also enables one to construct the MRF
objects that reproduce the exact exchange energy density, and
we discuss the possibility of using them to build the MRF xc
functional on top of exact exchange.
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Although the MRF quantities are in principle defined along
the whole density-fixed adiabatic connection (AC),20,21 so far
we only have a tractable approximation to the electronic
repulsion energy, a quantity that arises at the full (i.e., physical)
coupling strength of the electronic interaction. For this reason,
this MRF approximation misses the kinetic component of
correlation energy. To start tackling this problem, in the
present work, we propose a way for recovering this component
by combining the information at the full coupling strength with
the quantities from both weakly and strongly interacting limits
by using a local interpolation along the AC. We compare this
approach with other AC interpolation-based methods11,19 and
highlight its advantages over the previous efforts in this
direction22 for treating strong correlations.

2. BACKGROUND
2.1. Density-Fixed Adiabatic Connection. To give an

exact expression for the xc functional, we introduce the Ψλ[ρ]
fermionic wave function that integrates to a given density ρ(r)
(that of a physical system) and minimizes the sum of the
kinetic energy T̂ and the electron−electron repulsion V̂ee scaled
by the non-negative coupling constant λ. By linking the Kohn−
Sham (KS) noninteracting system (described by Ψ0[ρ] =
Φ[ρ]) with the physical system (described by Ψ1[ρ]), the
exact AC expression for the xc functional is given by20,21

∫ρ ρ λ[ ] = [ ]λE W dxc
0

1

(1)

where Wλ[ρ] is the (global) AC integrand that is given in
terms of the Ψλ[ρ] wave function and the Hartree energy,
U[ρ]:

ρ ρ ρ ρ[ ] = ⟨Ψ [ ]| ̂ |Ψ [ ]⟩ − [ ]λ λ λW V Uee (2)

We can write Wλ[ρ] as the following spatial integral over the λ
dependent xc energy density, wλ(r):

∫ρ ρ[ ] =λ λW w r r r( ) ( ) d (3)

It is well-known in DFT that wλ(r) is not uniquely defined and
several definitions (i.e., gauges) have been proposed for this
quantity.23,24 In the present work, we adhere to the definition
of wλ(r) given in terms of the electrostatic potential of the xc
hole:18,19

∫ π=λ

λ∞
w

h u
u

u ur
r

( ) 1
2

( , )
4 d

0

xc 2
(4)

where hxcλ (r, u) is the spherically averaged xc hole around r and
arises from spherically averaged pair-, P2λ(r, u), and one-
electron densities, ρs(r, u):

ρ ρ= −λ
λ

h u
P u

ur
r
r

r( , )
( , )
( )

( , )sxc
2

(5)

The spherically averaged pair-density, P2
λ(r,u), is obtained from

Ψλ[ρ]:

∫∑π σ σ σ

σ

= − × |Ψ +

| Ω

λ

σ σ
λP u N Nr r r u r

r r r

( , ) ( 1)
4

( , ( ) , ,

..., ) d d ... dN N Nu

2
...

1 2 3 3

2
3

N1

(6)

while the spherically averaged density around r is given in
terms of the following integral over the one-electron density:

∫ρ π ρ= + Ωur r u( , ) 1
4

( ) d us (7)

The energy density in the gauge of the electrostatic potential of
the xc hole (eq 4) is well-established in the literature18,19,22,25

and for more details on the advantage of this gauge choice over
the other gauges for the construction of DFAs based on eqs 1
and 3; see ref 24.
As usual, we can resolve wλ(r) into the exchange, wx(r) =

w0(r), and the λ-dependent correlation component:

= −λ λw w wr r r( ) ( ) ( )c, x (8)

It is also convenient to use wc,λ(r) to define the λ-averaged
correlation energy density, w̅c(r):

∫ λ̅ = λw wr r( ) ( ) dc
0

1

c, (9)

which allows us to write the correlation functional as

∫ρ ρ[ ] = ̅E w r r r( ) ( ) dc c (10)

Furthermore, we can partition w̅c(r) into its kinetic, tchole(r),
and the electronic repulsion component, wc,λ=1(r):

̅ = + λ=w t wr r r( ) ( ) ( )c c
hole

c, 1 (11)

which are the local variants of Tc[ρ] = ⟨Ψ1|T̂|Ψ1⟩ − ⟨Φ|T̂|Φ⟩,
and Uc[ρ] = ⟨Ψ1|V̂ee|Ψ1⟩ − ⟨Φ|V̂ee|Φ⟩, respectively. Therefore,
we can write

∫ ∫
ρ ρ ρ[ ] = [ ] + [ ]

ρ ρλ=

ß ßE U T
w tr r r r r r

c c

( ) ( )d

c

( ) ( )dc, 1 c
hole

(12)

2.2. Mathematical Structure of the Multiple-Radii
Functional. In the λ → ∞ limit, the exact xc energy in the
gauge of eq 4 has the following form:16,26

∑ ρ= | − [ ] | −∞
=

w vr
r f r

r( ) 1
2

1
( ; )

1
2

( )
i

N

i
h

2 (13)

where vh(r) is the Hartree potential and fi([ρ]; r) are the
comotion functions, fully nonlocal quantities that parametrize
|Ψλ|2 in the λ → ∞ limit.13,26,27 In this way, the comotion
functions determine the position of the remaining N − 1
electrons, when a reference electron is at r. The ultra
nonlocality of comotion functions makes their evaluation
highly complex and for general 3D geometries they have been
obtained only for systems with few electrons.16,28,29 From eq
13, we can see that a distance between a reference electron and
the remaining N − 1 electrons fully determines the xc energy
density in the strong coupling limit. The idea of the multiple-
radii functional of Vuckovic and Gori-Giorgi is based on the
generalization of eq 13 along the adiabatic connection. They
defined the MRF energy densities along the AC in terms of the
λ-dependent ef fective electronic distances or radii:

∑ ρ
=

[ ]
−λ λ

=
w

R
vr

r
r( ) 1

2
1

( ; )
1
2

( )
i

N

i
H

MRF

2 (14)

The associated MRF spherically averaged pair-density, which
gives rise to eq 14, is given by

∑ρ
π

ρ δ[ ] = −λ
λ

=
P u

u
u Rr r r( ; , ) 1

4
( ) ( ( ))

i

N

i2,
MRF

2
2 (15)
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with δ being the Dirac delta function. As P2,λMRF([ρ]; r, u) is
given by the sum of the δ functions, it does not resemble the
exact pair-density at finite λ. For this reason, the MRF pair
density is a fictitious object whose purpose is to reproduce the
wλ(r) xc energy density, which is the quantity that we aim to
approximate within the MRF framework. Along these lines, it
has been shown that the corresponding w1

MRF(r) of eq 14
represents an accurate approximation to its exact counter-
part.17

The MRF framework uses the full, yet computationally
tractable, nonlocality inspired by the exact forms of the
comotion functions. This nonlocality is built from the
following integrals over the spherically averaged density of eq
7:

∫ π ρ=N u x x xr r( , ) 4 ( , ) de

u

0

2
s (16)

The crucial physical quantity, defined in terms of Ne(r, u) that
has been used for studying and defining the Ri

λ([ρ]; r) radii:

ν = =λ λN R i Nr r r( ) ( , ( )), 2, ...,i e i (17)

gives the expected number of electrons inside of a sphere
centered at r and having radius Ri

λ(r).
In ref 17, an approximation to the xc energy densities at the

physical coupling strength has been constructed from the
physical argument by expecting that ν2λ=1(r) ≈ 1, ν3λ=1(r) ≈ 2,
..., νNλ=1(r) ≈ N − 1. We can thus write the νiλ(r) along the AC
as

ν σ= − + =λ λi i Nr r( ) 1 ( ), 2, ...,i i (18)

where σiλ(r) is the f luctuation function, which can push away or
bring closer the ith electron to the reference electron, with
respect to the expected distance at λ = 1: ai(r) = Ne

−1(r, i − 1).
In the same ref 17, a simple ansatz inspired by the exact
mathematical feature of SIL13,17 σiλ=1(r) has been used:

σ =λ= −r( ) 1
2

ei
bS r1 ( )i

2

(19)

where b = 5 has been chosen to optimize W1[ρ] for the helium
atom and where Si(r):

π ρ

= ∂
∂ |

= ̃

= −−S
N u

u

a a

r
r

r r r

( )
( , )

4 ( ) ( , ( ))

i
e

u N i

i i

r( , 1)

2

e
1

(20)

gives the information on the radial spherically averaged density
of the i-th neighboring electron. Combining eqs 3, 14, 17, and
18, we finally arrive at

∫ ∑ρ
σ

ρ

=
− +

− [ ]

λ λ

ν
=

−

λ
´ ≠ÖÖÖÖÖÖÖÖÖÖÖÖÖÖÖÖ ÆÖÖÖÖÖÖÖÖÖÖÖÖÖÖÖÖ

W
N i

U

r r r
r r

( ) 1
2

d ( ) 1
( , 1 ( ) )i

N

e i
r

MRF

2
1

( )i

(21)

Equation 21 shows that within the MRF functional, the
problem of the construction of the AC integrand (and thus
also approximate Exc[ρ]) is reduced to the construction of the
σi
λ(r) fluctuation functions in terms of Si(r) of eq 20. Note that
even a primitive ansatz for σiλ(r), as that of eq 19, yields rather
accurate energy densities at the full coupling strength. The
main object of the following sections is to use highly accurate
energy densities to obtain “exact” σiλ(r) to challenge the ansatz

of eq 19. Note that by the exact σiλ we refer to the one which
reproduces the corresponding exact wλ(r).

3. MRF FUNCTIONAL FOR TWO-ELECTRON SYSTEMS
3.1. MRF Objects from Exact xc Energy Densities. To

gain more insight into how approximations from the MRF
framework can be improved, we first consider two-electron
systems. In the case of two-electron systems, there is only one
radius appearing in eq 14, and this allows us to invert eq 14 to
obtain this radius in terms of the xc energy density and the
Hartree potential:

= + =λ

λ
R

v w
Nr

r r
( ) 1

( ) 2 ( )
( 2)

H
2

(22)

From highly accurate wλ(r) energy densities of two-electron
systems, we can use eq 22 to obtain the “exact” R2

λ(r). We
observe here the trends in the MRF quantities across the
helium isolectronic series. Since a reasonable approximation
for the density of this series is given by30

ρ ρ≈ Z Zr r( ) ( )Z
3

(23)

we can observe how the key MRF objects change, as the
density becomes more compact with the increase of the
nuclear charge Z. As said, by plugging the exact energy density
into eq 22, we can directly obtain the “exact” R2

λ(r). However,
it is more interesting to calculate the corresponding νλ(r) and
σλ(r) quantities, as the two quantities are expected to be more
universal, in the sense that we expect them to be less system-
and r-dependent (see eqs 17 and 18). Combining eqs 17, 18,
22, we can write σ2λ(r) as

σ = + −λ
λ

ν

−

λ
´ ≠ÖÖÖÖÖÖÖÖÖÖÖÖÖÖÖÖÖÖÖÖÖÖÖÖÖÖÖÖÖÖÖ ÆÖÖÖÖÖÖÖÖÖÖÖÖÖÖÖÖÖÖÖÖÖÖÖÖÖÖÖÖÖÖÖN v wr r r r( ) ( , ( ( ) 2 ( )) ) 1e H

r
2

1

( )2 (24)

In Figure 1, we show the “exact” σλ(r) = σ2
λ(r) quantities for

the members of the helium isoelectronic series with Z values
from 1 to 10, at λ = 0 (upper panel) and at λ = 1 (lower panel).
The σ1(r) curves have been obtained from eq 24 by using
highly accurate wλ(r) energy densities at the full coupling
strength. The wave function at the full coupling strength, used
for calculating w1(r) (eq 4), has been obtained from the
GAMESS-US package31 at the full-CI level within the aug-cc-
pVQZ basis set.32 The one-electron density from this wave
function has been used for obtaining w0(r), since for N = 2 it
can be calculated from the Hartree potential: w0(r) =
−(4vh(r))−1.
To understand the trend in the exchange (λ = 0) σλ(r)

curves, as Z is varied, we note that eq 23 dictates the following
scaling of the exchange energy density:

ρ ρ[ ] = [ ]ikjjj y{zzzw
Z

w
Z

r r( ; ) 1 ;Zx x (25)

Equation 25, in turn, dictates the following scaling of σ0(r) for
the helium isoelectronic series:

σ ρ σ ρ[ ] = [ ] Zr r( ; ) ( ; )Z
0 0

(26)

Equation 26 explains why the exchange σ0(r) curves, shown in
the upper panel Figure 1, do not change substantially as Z is
varied. In fact, they would be all the same, if the density of the
helium isolectronic series satisfies exactly eq 23.
We move now to the σ1(r) curves, shown in the lower panel

of Figure 1. We can see that starting from the hydride ion,
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σ1(r) ≈ 0, σ1(r) decreases with Z and then quickly scales to an
asymptotic constant that lies around −0.3. By analogy with eq
8, we define the correlation component of σλ(r) as

σ σ σ= −λ λr r r( ) ( ) ( )i i i
c, 0

(27)

We can observe from Figure 1 that σc,1(r) (i.e., the difference
between σ1(r) and σ0(r)) decreases with Z. At large Z, it scales
to a small positive constant σic,1(r) ≈ 0.04, reflecting that in the
high-density limit (at least for nondegenerate KS systems)
correlation becomes just a small perturbation.33,34

We can see now that the present MRF approximation to
w1(r) of eq 19, constructed based on physical arguments,17 is
not flexible enough to capture the σ1(r) curves at larger Z
values of Figure 1. This is because the approximate σ1(r) of eq
19 is bounded by 0 from below. The results of this section can
already be used for improving the form σ2

1(r) of eq 19, by
allowing it to be negative in high-density regimes. More
specifically, σ21(r) can be improved by allowing it to go to ∼
−0.3, instead of 0, as the high-density limit, signaled by large
S2(r) values, is approached. Alternatively, if one wants to
approximate σic,1(r) on top of exact exchange (this route will be
discussed in Section 4), one can ensure that σic,1(r) goes to a
small positive constant, as the high-density limit, again signaled
by large S2(r), is approached.
3.2. MRF Objects from Approximate Energy Den-

sities. In addition to the exact σλ(r) for N = 2 shown in
Section 3.1, we can also compute σλ(r) from DFAs by plugging
approximate wλ(r) into eq 24. To have a meaningful
comparison of the exact and approximate σλ(r), we remark
again that the approximate wλ(r), entering eq 24, also needs to
be in the gauge of eq 4. We employ here the local density
approximation (LDA)1 for obtaining approximate σλ(r) at λ =
0 and λ = 1, as well as the Becke-Roussel (BR) model35 for the
energy density at λ = 0. Note that other DFAs, such as

common (meta)-GGAs, typically do not model wλ(r) defined
by eq 4.19,36

In Figure 2 we compare the exact σ1(r) with that from the
LDA functional for the helium atom and the hydride ion. In

the same figure we also compare the exchange σ0(r) quantity
with the approximate ones from the BR and LDA exchange
energy densities. The expressions used for evaluating the LDA
and BR energy densities and further computational details are
given in Appendix A. We can see from Figure 2 that the exact
σ1(r) stays nearly constant: σ1(r) ≈ 0 for H− and σ1(r) ≈ −0.1
for He. Contrary to the exact σλ(r), at both λ = 0 and λ = 1,
those of LDA substantially change with r: they are too large
when a reference electron is close to the nucleus and then at
large r they tend to −1. This mirrors the fact that the
magnitude of the LDA xc energy is strongly overestimated in
the region around a nucleus, while in valence atomic regions it
is underestimated.37,38

Given that for two-electron systems R2
λ(r) represents the

effective distance between electrons, the νλ(r) = σλ(r) + 1
quantity represents the charge associated with the ef fective
distance between electrons (see eqs 17, 18, and 24). We can also
see from Figure 2 that σ0(r) and σ1(r) of LDA unphysically
tend to −1 at large r, and in this way the corresponding LDA
νλ(r) charges tend to 0 at large r. We can understand this
unphysical behavior of LDA in the light of the features of the
underlying xc holes. When a reference electron is placed in the
atomic tail, where the density is very low, the LDA xc hole
becomes very shallow. This makes the magnitude of electro-
static potential of the LDA xc hole very small (i.e., the wLDA xc
energy density) and it decays exponentially, instead of ∼− | |r

1
2

at large r. For this reason, the underlying LDA ν0(r) and ν1(r)
charges drop to 0 at large r.
From Figure 2, we can see that although the σ0(r) of the BR

approximation is still not in quantitative agreement with the

Figure 1. Plots of σ0(r) (upper panel) and σ1(r) (lower panel)
quantities of eq 24 for the helium isoelectronic series with nuclear
charges 1 ≤ Z ≤ 10 and with radial distance r/a.u. scaled by nuclear
charge.

Figure 2. Plots of the exact and approximate σλ(r) quantities of eq 24
for the hydride ion (upper panel) and the helium atom (lower panel),
at λ = 0 (triangles) and λ = 1 (circles).
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exact σ0(r), it displays a large improvement over the LDA,
particularly in the region near the nucleus. The improvement
σ0(r) of BR over that of LDA is also noticeable in the valence
region. This is what one would expect, since w0

BR(r) by
construction has the correct ∼− | |r

1
2

asymptotic behavior for |r|
→ ∞.35

4. REVERSE MRF MACHINERY
One of the key advantages of the MRF framework for building
new DFAs is its full, yet computationally tractable, nonlocality.
It is well-known that, if we want to use the exact exchange
energy density, we need fully nonlocal correlation to be
compatible with it.39−41 To obtain a starting point for the
construction of the MRF correlation functional on top of exact
exchange, we can think of engineering σi

x(r) quantities, which
reproduces the exact exchange energy density wx(r). Note that
a similar strategy has already been explored and used in the
construction of DFAs, such as the reverse Becke−Roussel
machinery, where a model exchange hole is engineered in such
a way to reproduce the exact wx(r).

42−44

More generally, to pursue the idea of reverse engineering
σi
λ(r) that reproduces given wλ(r), we first rewrite eq 14 as

∑ ρ[ ] = +
λ

λ=
R

v w
r

r r
( ; ) 1

( ) 2 ( )i

N

i
H2 (28)

By plugging eq 17 into eq 28, we can write

∑ σ− + = +
λ

λ=

−N i
v w

r r
r r

( , 1 ( )) 1
( ) 2 ( )i

N

e i
H2

1

(29)

For systems with N > 2 we cannot find a unique set of (σ2λ(r),
..., σNλ (r)) that yields the input energy density wλ (r). To
circumvent this problem, we consider a simplification by i-
averaging the fluctuation function of eq 18: σiλ(r) ≈ σ̃λ(r).
With this simplification, eq 29 becomes

∑ σ− + ̃ = +
λ

λ=

−N i
v w

r r
r r

( , 1 ( )) 1
( ) 2 ( )i

N

e
H2

1

(30)

Equation 30 now ensures that for a given density there is a
one-to-one correspondence between σ̃λ(r) and wλ (r), allowing
us to reverse engineer σ̃λ(r) by using the wλ (r) input energy
density. Another appealing feature of eq 30 is that wλ (r)
always decreases (becomes more negative) as σ̃λ(r) increases.
This simply arises from eq 16, as Ne(r,u) increases with u,
given that ρs(r,u) ≥ 0.
The primary use of eq 30 would be to obtain σ̃x(r) that

reproduces the exact exchange energy density, wx(r). As
discussed in section 2.2, the λ-dependent fluctuation function,
σi
λ(r), defines the MRF xc functional by means of eqs 21 and 1.
Setting

σ σ σ= ̃ +λ λr r r( ) ( ) ( )i i
x c,

(31)

where σi
c,0(r) = 0, we ensure that the MRF functional is built

on top of exact exchange. At the same time, we obtain a
starting point for the construction of σiλ(r) and the idea is to
build σi

c,λ(r) using simple Si(r) -dependent forms, akin to eq
19. Note again that xc functional approximations based on eq
31 would use wx(r) as an input ingredient, as this quantity is
needed for obtaining σ̃x(r) by means of eq 30. The dependence
of σiλ(r) on λ will be discussed in the remainder of this section.

Along the lines of the σiλ(r) dependence on λ, as discussed in
section 2.2, we expect σi1(r) on average to be around 0. The
MRF functional based on this assumption (more precisely with
the fluctuation function of eq 19, which keeps σi1(r) close to 0,
unless the corresponding Si(r) becomes very small) yields
rather accurate W1

MRF[ρ] values.17 Even though the corre-
sponding w1

MRF(r) is overall rather accurate as well, it has a
deficiency that it does not always satisfy the w1

MRF(r) ≤ wx(r)
inequality. For example, we have observed that in intershell
atomic regions (already in the case of the neon atom that will
be discussed below), w1

MRF(r) unphysically lies above the exact
wx(r). This can be particularly problematic if w1

MRF(r) is used
for the construction of the correlation functional by means of
an AC-based interpolation between the xc energy densities at
λ = 0 and λ = 1 (this route will be explored in section 5). On
the positive side, this deficiency can be easily fixed by defining
a constraint based on the σ̃x(r) fluctuation function, which, as
said, can be obtained by inversion from the exact energy
density (eq 30). More specifically, by simply constraining σi1(r)
to satisfy

σ σ≥ ̃r r( ) ( )i
1 x

(32)

or equivalently σi
c,λ(r) ≥ 0, we ensure that the corresponding

w1
MRF (r) always lies below the exact exchange energy density

(i.e wc,1
MRF(r) = w1

MRF(r) − wx(r) ≤ 0).
Besides using eq 30 to obtain the “exact” σ̃x(r), we can

calculate exact σ̃λ(r) for other λ values. These quantities can be
used as a guide for the construction of the λ-dependent
fluctuation functions (see eq 21). Thus, in Figure 3, we show

σ̃λ(r) for the neon atom for several λ values between 0 and 1
calculated from highly accurate wλ(r) energy densities. The
highly accurate energy densities used throughout this section
have been taken from refs 19, 22, and 45. They have been
obtained from the Ψλ[ρ] at the CCSD46/aug-cc-pCVTZ32

level of theory. The CCSD method has been used in
combination with the Lieb maximization algorithm of Teale
and co-workers to constrain Ψλ to always integrate to the
physical ρ(r) (i.e., that at λ = 1). For more details on this
methodology, see refs 19, 30, 47, and 48.
From Figure 3, we can see that σ̃λ(r) curves at λ > 0

essentially follow the shape of σ̃0(r), and they become more
positive with the increase of λ, mirroring that as λ increases
electrons are effectively further from one another. This again
illustrates a neat property of MRF that w(r) always decreases

Figure 3. σ̃λ(r) quantity of eq 30 along the AC for the neon atom
delivering the exact xc energy densities in the gauge of eq 4, with 0 ≤
λ ≤ 1.
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with σ̃(r) (eq 30). Interestingly, we can also see from Figure 3
that in the intershell region (r ∼ 0.3 au) the σ̃0(r) = σ̃x(r)
quantity is above 0. Given that in this region σi

1(r) of eq 19 is
very close to 0, the corresponding w1

MRF(r) will incorrectly lie
above the exact w0(r). In intershell atomic regions the total xc
effects are strongly dominated by exchange,49 and in this case,
the exchange itself is more ef f icient in keeping electrons away
f rom one another than the MRF model for λ = 1 pertinent to eq
19. As discussed earlier in this section, this problem can be
fixed by building σi

1(r) models that satisfy eq 32.
Another interesting feature of the MRF functional based on

the fluctuation function of eq 19 is that for neutral atoms its
accuracy increases with N.17 For example, it gives the following
relative errors in W1[ρ] energies: 7.4% for He and −1% for Be,
whereas for Ne and Ar it drops to 0.5% and −0.5%,
respectively. To try to better understand this observation, in
Figure 4, we show the σi

1(r) evaluated on the highly accurate

w1(r) (the computational details are the same as those of
Figure 3) for the four atoms. We can observe that as we go
from He, over Be to Ne/Ar, the exact σ̃1(r) is getting closer to
0. This indeed rationalizes the observed trend in accuracy of
W1

MRF[ρ], given that σi1(r) ≥ 0 of eq 19 stays very close to 0 for
neutral atoms.

5. RECOVERING THE KINETIC COMPONENT OF THE
CORRELATION ENERGY VIA INTERPOLATION
ALONG THE ADIABATIC CONNECTION

From eqs 21 and 1, we can see that the λ-dependent
fluctuation functions for λ values between 0 and 1 completely
define the MRF xc functional. Having a simple form, akin to eq
19, for the λ-dependent fluctuation functions, which produce
accurate xc energy values, is indeed the ultimate goal
concerning the construction of the MRF xc functional.
However, given that so far it has been shown that only
accurate Wλ

MRF[ρ] and wλ
MRF(r) quantities at λ = 1 have been

constructed, in this section we consider the possibility of
recovering the Exc[ρ] functional by combining quantities at λ =
1 with quantities from the weakly and strongly interacting
limits. Note that by having only the λ = 1 point of the AC
connection (without the full dependence between 0 and 1), we
miss the kinetic component of Exc[ρ], given that the xc
functional can also be written as

ρ ρ ρ[ ] = [ ] + [ ]E W Txc 1 c (33)

In this section we develop a method based on a local
interpolation along the adiabatic connection to recover Tc[ρ]

by using the xc energy density at the full coupling strength as
one of the input quantities for the interpolation. We remark
that this approach is very general and thus not useful only for
the MRF functional but also for other approaches that have a
model for w1(r). These include the w1(r) model pertinent to
the B13 functional44,50 but also correlation factor approaches,
where for example a correlation factor can be designed to
transform the exact hx

λ=0(r, u) into hxc
λ=1(r, u).51,52 We remark

that similar AC-based approaches for the construction of
Exc[ρ] approximations have been already considered,19,22,53−55

and in what follows we will briefly review these approaches and
describe how they will be adjusted to include the λ = 1
information in the interpolation scheme.
Interpolations along the adiabatic connection between the

weak and strong coupling limit of DFT have been utilized by
Seidl and co-workers for the construction of the interaction
strength interpolation (ISI) family of the xc functional
approximations.11,12,14,56 The major problem with the ISI
framework is its lack of size-consistency,57,58 which can be
remedied by a simple correction that works for systems that
dissociate into fragments with nondegenerate ground states.59

Size-consistency of the ISI framework can also be recovered if
one does a local, instead of a global, interpolation along the AC
(i.e., at each point in space) by using the energy densities of eq
4.19,22,54,55 One of the simplest ISI interpolation forms that has
been used for both global and local AC interpolation is the
SPL (after Seidl, Perdew, and Levy) form:11,13,19

λ
= +

+λw a b
c

r r r
r

( ) ( ) ( )
1 ( )

SPL

(34)

The three parameters of eq 34 are fixed by the ingredients used
in the SPL interpolation scheme, wSPL(r) = {w0, w0′, w∞}, and
they are given by

=
= −

= − ′
−

∞

∞

∞

a w

b w w

c
w

w w

r r

r r r

r
r

r r

( ) ( )

( ) ( ) ( )

( )
2 ( )

( ) ( )

SPL

SPL
0

SPL 0

0 (35)

With small adjustments, we can still use the SPL form by
replacing w0′(r) of wSPL(r) with the energy density at the full-
coupling strength, w1(r). We denote this interpolation form by
SPL1, and its input ingredients are wSPL1(r) = {w0, w1, w∞}.
These ingredients now fix the SPL1 parameters entering eq 34:

=
=

=
− + −
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0 1 0 1
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2

(36)

From the integral end points of eq 9, we expect w0(r) and
w1(r) to play more important roles in the SPL1 interpolation
scheme than the corresponding w∞(r) quantity. However, if
we only use w0(r) and w1(r) quantities, we do not have much
flexibility, as we can only perform a linear interpolation
between these two λ points:40

λ≈ − +λw w w wr r r r( ) ( ( ) ( )) ( )lin
1 0 0 (37)

Figure 4. σ̃1(r) quantity of eq 30 at the full coupling strength for the
helium, beryllium, neon, and argon atoms.
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To better understand the role of w∞(r) in the local SPL1
interpolation scheme, in Figure 5 we compare the correlation

component of the highly accurate local AC curves (wc,λ) for the
beryllium atom with those obtained by linear interpolation (eq
37) and SPL1 (eqs 34 and 36). In the upper panel of this
figure, we place a reference electron in the core region (r = 0.2
au), while in the lower panel we place it in the valence region
(r = 2.2 au). The highly accurate local AC curves have been
taken from refs 19 and 45, and their computational details are
the same as those of section 4. We can first notice the
difference in the shape between the two AC curves: while in
the core region the local AC curve is strongly linear in λ (a
region dominated by dynamical correlation), the curvature of
the local AC curve in the valence region is highly pronounced,
mirroring a higher contribution of static correlation in this
region.22,45 For this reason, the linearly interpolated curve is in
a fair agreement with the exact one in the core region, while it
poorly models the AC curve in the valence region. On the
other hand, the SPL1 interpolated local AC curves are in a
good agreement with both of the exact local AC curves. From
this simple example, we can already see that the use of w∞(r) is
able to provide more flexibility in an interpolation scheme
when used in tandem with w0(r) and w1(r).
Upon using the SPL1 interpolation for the construction of

the Tc[ρ] component of the correlation energy, we can expect
two sources of errors: one due to the interpolation itself and
the other due to the inexactness of the wSPL1(r) ingredients if
approximations for their evaluation are used. Following the
ideas of ref 19, in this section we disentangle these two sources
of errors and isolate the error that is only due to the
interpolation by using highly accurate energy densities forming
wSPL1(r). As the first step in assessing the accuracy of the SPL1
functional, in Table 1 we show the Tc[ρ] values obtained by
the SPL1 interpolation schemes for a set of small atoms (ions)

that have been also considered in ref 22. The reference kinetic
component of the correlation energy: Tc[ρ] = ⟨Ψ1[ρ]|
T̂|Ψ1[ρ]⟩ − ⟨Φ[ρ]|T̂|Φ[ρ]⟩ and the employed energy densities
w0(r) and w1(r) have been taken from ref 22, and they have
been computed at the CCSD/uncontracted-aug-cc-pCVTZ
level of theory by using the Lieb maximization algorithm. The
xc energy density from the strong coupling limit, w∞(r), has
been computed from eq 13 (see ref 13 for more details) on the
density arising from the same level of theory. In addition to the
local SPL1 model, Tc[ρ] values in Table 1 have also been
obtained by the global SPL1 scheme, which uses the same
interpolation form (eqs 34 and 36), but with global (W0[ρ],
W1[ρ], and W∞[ρ]) input quantities instead. For comparison,
we also show the Tc[ρ] values obtained by the linear
interpolation (from eq 37, which yields ρ ρ[ ] ≈ − [ ]T Uc

1
2 c ).

We can see from Table 1 that in the case of all considered
atoms/ions, both global and local SPL1 interpolations give
more accurate Tc[ρ] values than the linear interpolation of eq
37. In fact, an MAE of the local SPL1 interpolation is nearly 3
times smaller than that of the linear interpolation. As observed
for other interpolation schemes,22 the local variant of SPL is
more accurate than its global counterpart (an MAE of the
former interpolation is nearly by the factor of 2 smaller than
that of the latter). For the same set of atoms/ions, the errors in
total correlation energy made by the global and local SPL
interpolations (eqs 34 and 35), assessed in ref 22, are more by
the factor of 2 larger than the errors of their SPL1 variants.
Nevertheless, we need to keep in mind that the higher accuracy
of the SPL1 interpolations over the SPL ones is what one
would expect, given that for the time being we use the exact
information at λ = 1 in the SPL1 scheme. For this reason, the
total error in Ec[ρ] made by this interpolation scheme is equal
to its error in Tc[ρ].
Even more interesting than the global Tc[ρ] values, we also

analyze its local counterpart:

= ̅ − λ=t w wr r r( ) ( ) ( )c
hole

c c, 1 (38)

This quantity represents the kinetic correlation energy density
defined in terms of the differences in the electrostatic
potentials between the λ-averaged xc hole and that at λ = 1
(see eqs 4 and 12). Even though this definition of the kinetic
correlation energy density is not unique (see refs 60−62 for
other definitions), we stay gauge consistent, in the sense that
all energy density components throughout this work arise from
the definition of wλ(r) of eq 4. In Figure 6, we show the highly
accurate tchole(r) quantities together with those obtained by the
SPL1 local interpolation and linear interpolation for the

Figure 5. Reference and interpolated local correlation AC curves,
wc,λ(r) of eq 8, for the Be atom with the reference electron placed at r
= 0.1 au (upper panel) and r = 2.2 au (lower panel). (insets) positions
of reference electrons in plots with the radial density of the Be atom.

Table 1. Atomic (Ionic) Kinetic Component of Correlation
Energies (Tc[ρ]) in Hartree Atomic Units Obtained by the
Global and Local SPL1 Interpolationsa

atom Tc
ref linear global SPL1 local SPL1

H− 0.0278 0.0343 0.0266 0.0263
He 0.0355 0.0378 0.0345 0.0344
Be 0.0700 0.0810 0.0758 0.0674
Ne6+ 0.1252 0.1543 0.1480 0.1305
Ne 0.2818 0.3145 0.3015 0.2980
Ar 0.3243 0.3641 0.3578 0.3424
MAE (mH) 20.23 14.00 7.46

aT c[ρ] energies obtained by the l inear interpolat ion
( ρ ρ[ ] = − [ ]T Uc

1
2 c ) are also shown for comparison.
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hydride ion and neon atom. As it can be seen from Figure 6,
tchole(r) obtained by the SPL1 interpolation is in both cases
more accurate than that obtained by the linear interpolation by
using eq 37 (note that eq 37 yields ≈ −t wc

hole 1
2 c,1). However,

one can see that the improvement of the SPL1 interpolation
over the simple linear one is more noticeable in the case of the
hydride ion. This is due to the fact that wλ(r) is more linear in
λ in the case of Ne than in the case of H−. Furthermore, tchole(r)
of the neon atom reflects its shell structure, and we can also see
that the linearly interpolated tchole(r) is in a fairer agreement
with its exact counterpart in the first shell than in the second.
This observation also reflects the stronger linear dependence of
wλ(r) in λ in the first shell of Ne than in the second shell.45 In
the remainder of this section we will focus on the dissociation
of LiH, an interesting paradigmatic case of strong correlation
that we will use here to highlight the advantage of the local
SPL1 interpolation scheme over other AC interpolation-based
schemes.
The difficulties of AC-based functionals in correctly

describing the dissociation of LiH have been carefully studied
in ref 22. From ref 22, we take an accurate LiH dissociation
curve and that obtained with the global SPL functional and
compare them with curves obtained with the SPL1 functional
developed in the present work (in its both local and global
variant). The plots of LiH dissociation curves are summarized
in Figure 7. The reference curve has been obtained at the full-
CI within the uncontracted cc-pVDZ basis set and the
quantities for the SPL interpolation had been obtained at the
same level of theory by using the Lieb maximization algorithm.
The w1(r) energy density and its global counterpart (W1[ρ])
used in the SPL1 interpolation schemes have been computed
from Ψλ=1[ρ] also at the full-CI/uncontracted-cc-pVDZ level
of theory by using the GAMESS-US package.31 While for
atoms we used the exact form of w∞(r), for LiH we could not

reach the convergence level with the algorithm of ref 16 that
will produce highly accurate w∞(r). For this reason, for LiH we
have used an accurate approximation to this quantity from the
nonlocal radius (NLR) model.63

Before analyzing Figure 7, we remember that the
dissociation of LiH is accompanied by the KS HOMO−
LUMO gap closing, as the bond stretches, and the consequent
divergence of the corresponding global AC initial slope: W0′[ρ]
→ −∞.22,64 The local variant of the (exact) initial AC slope
also diverges in this case: w0′(r) → −∞,22 as the KS HOMO−
LUMO energy gap also appears in the denominator for the
w0′(r) expression.19 As the result of the two divergences, the
approximate xc functional from both local and global SPL
interpolation schemes will tend to Exc

SPL[ρ] → W∞[ρ], as the
bond stretches. For one-electron-like systems this is still fine;
as for these systems, Exc [ρ] = W∞[ρ] holds. However, for
general systems, electrons at the infinite coupling strength are
overcorrelated, and thus, W∞[ρ] is much lower than the exact
Exc[ρ] functional. For this reason, a scenario in which Exc

SPL[ρ]
approaches W∞[ρ], as the bond stretches, leads to the
overcorrelation error. Due to this error, the LiH dissociation
curve of Figure 7 obtained with the global SPL unphysically
bends down at large bond lengths, with unacceptably low total
energies. The overcorrelation error is avoided within both
global and local SPL1 interpolation scheme, as they do not
make use of the initial AC slope (eqs 34 and 36). Despite this,
as it can be seen from Figure 7, the dissociation curve from the
global SPL1 is above the exact curve at large bond lengths, due
to the size-consistency error. Contrary to the SPL models and
the global SPL1 model, both size consistency and over-
correlation error are absent in the local SPL1 model. As it can
be seen from Figure 7, the dissociation curve from the local
SPL1 model is in a fair agreement with the exact curve.
We again remind the reader that the use of the highly

accurate and thus expensive ingredients enabled us to isolate
and assess the error of the AC models that is only due to the
interpolation. This interpolation error reduces to the over-
correlation error (in the local and global SPL scheme) and the
size-consistency error (in the case of the global SPL and global
SPL1 scheme). Given that these errors are absent in the local
SPL1 scheme, our findings support the use of this scheme for

Figure 6. Reference and interpolated kinetic correlation energy
densities in the gauge of the correlation hole (see eq 38) for the
hydride ion (upper panel) and neon atom (lower panel).

Figure 7. LiH dissociation curves obtained by the global SPL1, local
SPL1, and global SPL AC-based interpolation schemes. The FCI
curve, as a reference, is shown for comparison.
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the construction of future approximations for the kinetic
correlation energy. For any practical purposes, in place of the
exact and computationally intractable w1(r) quantity, its
approximations need to be used. First of all, this would
include the approximate w1(r) from the MRF model improved
by the incorporation of the constraint given by eq 32 but also
other suitable approximations that can be used for building
w1(r).

44,50,51

6. CONCLUSIONS AND PERSPECTIVES
In the present paper we study different features of the MRF
functional to lay the foundation for the development of new
DFAs based on it. We use highly accurate energy densities of
small atoms to reveal the structure of the exact MRF objects.
We also use the crucial MRF physical quantity, the charge
associated with effective distance between electrons, to analyze
other approximate xc energy densities in the gauge given by eq
4. By developing the MRF reverse machinery in section 4, we
pave the way for the construction of the MRF xc functional on
top of exact exchange (eq 31). We also use this reverse
machinery to define a simple constraint which forces the MRF
xc energy density at the full coupling strength to lie below that
of the exact exchange, a feature that is presently missed by the
MRF xc energy densities arising from eq 19.
We also develop a local interpolation along the adiabatic

connection-based scheme (called SPL1) used for the
construction of the approximate Tc[ρ] functional, and we
obtain it by combining the information from the weakly,
strongly and physically interacting regimes. We show that,
unlike other AC interpolation-based methods, the SPL1
method does not suffer from the overcorrelation and size-
consistency errors upon stretching bonds of systems that
dissociate into open-shell fragments. As the first step in
assessing the accuracy of the SPL1 scheme, we disentangle its
sources of errors and isolate the error that is only due to the
interpolation. Our tests on small atoms/ions and LiH molecule
show that the SPL1 scheme recovers the Tc[ρ] energy rather
accurately. In future work we will use the SPL1 approach in
tandem with the MRF xc energy densities at λ = 1 (e.g., those
that would arise from forms akin to eq 19, improved by the
insights obtained from the exact results in sections 3.1 and 4).
Our ongoing efforts to implement the MRF functional into

quantum-chemical software are based on the recent work of
Bahman et al., who showed how Ne(r, u) of eq 16, as the key
MRF ingredient, can be efficiently calculated by using a
Gaussian basis set.55 The idea is to have a flexible
implementation, so that new and improved forms of the
fluctuation functions (see e.g., eqs 21 and 19), resulting from
the findings of the present work, can be easily assessed. In
future work we will also make use of the direct transferability of
the MRF framework to other isotropic interactions between
particles (e.g., short- and long-range components of the
Coulomb interaction). This, in turn, we will allow us to use the
range separation techniques65 to further tune the accuracy of
the MRF functional.

■ APPENDIX A: LDA AND BECKE-ROUSSEL ENERGY
DENSITIES

The LDA xc energy density at the full coupling strength used
in section 3.2 is obtained from66

= ∂
∂ ϵw r

r r
r r( ) 1 ( ( ))s

s s
s xc s1

LDA 2

(39)

where rs(r) is the Wigner−Seitz radius: πρ=
−( )r r r( ) ( )s

4
3

1/3

and ϵxc(rs) is the LDA (λ-averaged) xc energy density. We have
used the PW92 functional for computing the correlation part
of ϵxc(rs).

67

Section 3.2 also employs the approximate energy density
from the Becke-Roussel (BR) exchange hole model.35 This
model hole takes the following form:
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where the aσBR(r) and bσBR(r) are the parameters that are fixed
by the exact on-top depth and curvature of the exchange-hole
(u → 0):68

6ρ= − − +σ σ σh u Q u ur r r( , ) ( ) ( ) ( )x ,
2 4

(41)

where ρσ(r) is the density of spin-σ electrons. The Qσ(r)
quantity is the exchange hole curvature given by
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where τσ(r) = ∑i
occ|∇ϕi,σ(r)|2, with ϕi,σ(r) being the occupied

KS orbitals. The aσBR(r) and bσBR(r) parameters can be obtained
by solving a simple 1D nonlinear equation for every r gridpoint
(see refs 43 and 69 for more details). Then, the underlying
energy density, wx

BR(r), is obtained by plugging eq 40 into eq 4,
and it has the following analytic form:

= −
− −
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where yσ(r) = aσBR(r)bσBR(r). Since in this work we calculate
wx,σ
BR(r) only for closed-shell species (He and H−), we have that

wx
BR(r) = wx,α

BR(r) = wx,β
BR(r). The densities used for the

evaluation of the LDA and BR xc energy densities have been
obtained at the FCI/aug-cc-pVQZ level, like all the other
densities employed in section 3.
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