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ABSTRACT
The strongly interacting limit of density functional theory has attracted considerable attention recently due to its ability to deal with
the difficult strong correlation problem. Recent work [S. Vuckovic and P. Gori-Giorgi, J. Phys. Chem. Lett. 8, 2799–2805 (2017)] intro-
duced the “multiple radii functional” (MRF) approximation, inspired by this limit, which is designed to work well for strong correlations
between dissociated fragments. Here, we analyze the MRF in exactly solvable one-dimensional molecules to uncover how it matches and
deviates from exact results and use range-separation of the Coulomb potential in both exact and approximate theory to explore how
this varies in space. We show that range-separated treatment of the MRF can offer advantages over a full treatment, by using MRF for
short-ranged and/or midranged interactions only. Our work opens a path to new approximations incorporating the MRF, amongst other
ingredients.

Published under license by AIP Publishing. https://doi.org/10.1063/1.5125692., s

I. INTRODUCTION

Density functional theory (DFT)1 is presently a workhorse of
electronic structure calculations across disciplines that range from
biochemistry to material science.2–7 DFT is, in principle, an exact
theory, but all practical calculations require an approximation to the
exchange-correlation (xc) functional. This is a key quantity in DFT
as it captures the very quantum, Coulombic, and fermionic nature of
electrons. Density functional approximations (DFAs) to the xc func-
tional have achieved a widespread success, and nowadays they are
very close to achieving the desired chemical accuracy for weakly and
moderately correlated systems.7

In contrast, for strongly correlated systems, the situation is
strikingly different. A number of fundamental failures of DFAs when
dealing with strong correlation have been described.2,8 The problem

of strong correlation within DFAs has been looked at from several
perspectives.2,3,8–10 Despite that, we still do not have a DFA able to
correctly describe the physics of strong electronic correlations with-
out compromising the accuracy of standard DFAs for weakly and
moderately correlated systems.2,3,7,11

In attempt to address the long-standing strong correlation
problem, Vuckovic and Gori-Giorgi recently proposed a new way
for the construction of DFAs,12,13 inspired by the features of the exact
xc functional from the strongly interacting limit (SIL) of DFT.14–18

More specifically, they simplified and rescaled the xc functional from
the SIL, and thus they made it suitable for the treatment of phys-
ical systems at a reasonable computational cost. In this way, they
have laid the foundation for the so-called multiple radii functional
(MRF). Already by construction, the MRF has several appealing
properties missed by standard DFAs. It captures the physics of bond
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breaking, becomes highly accurate in the low-density limit, and pro-
vides accurate xc energy densities (defined within the conventional
DFT gauge).11,19–21 These energy densities also display the correct
asymptotic behavior.12

While the development of efficient algorithms for an imple-
mentation of the MRF is currently subject to intensive efforts,
its ultimate computational cost is expected to be comparable12

with that of local hybrid functionals,22–24 once efficient algo-
rithms are designed. Initial tests of the MRF functional—on small
atoms and the hydrogen molecule—show that the method cap-
tures strong correlation effects, while still being comparably accurate
for weakly and moderately correlated electronic regimes. It thus is
already a good general purpose density functional approximation
(DFA).

So far, the MRF functional has been applied to three-
dimensional Coulombic systems. However, its framework can be
easily transferred to other dimensionalities and other (isotropic)
interactions between electrons. For this reason, as opposed to
other DFAs (already starting from the local density approxima-
tion1), the MRF does not require reparametrization when a num-
ber of dimensions and/or an interaction between particles are
changed. This is because the functional is based on the effect
of local descriptors of electron numbers (see Sec. II) on interac-
tions combined with explicit interaction terms and is consequently
insensitive to short-range expansion of homogeneous electron
gases.

In the present work, we draw on this feature of MRF and apply
it to an exactly solvable one-dimensional (1D) molecular model
with two electrons interacting via soft-Coulomb potential. Such 1D
models have served as a convenient tool for testing new DFAs25–27

and used as a theoretical laboratory for revealing features of the
exact xc functional.28–30 Notably, they offer the chance to tune inter-
species interactions from strong to weak in a controlled fashion with
numerically exact solutions.

We perform an analysis at the pair-density level where we
translate the exact pair-densities into their MRF form and com-
pare them with those obtained from the MRF approximation. We
also use here the common decomposition of the Coulomb (in our
case soft-Coulomb) electronic interaction into a short-range (sr)
and long-range (lr) part31–34 to study the underlying sr and lr
components of the MRF xc energy densities. This is an impor-
tant first step in combining MRF with popular range-separation
techniques.31

The paper is organized as follows. First, we introduce the the-
ory behind the MRF. Then, we introduce the 1D model systems
we use to explore it. Then, we study exact and approximate pair-
densities. Next, we discuss results by studying exact and approxi-
mate energy densities, in the context of range-separation. Finally, we
conclude.

II. THEORY
A. Basic DFT background

We begin by briefly reviewing basic DFT equations that con-
cern the density-fixed adiabatic connection (AC) representation of
the xc functional.35,36 Consider the DFT wavefunction obtained
from a constrained minimization,37

Ψλ[n] = arg min
Ψ→n

⟨Ψ∣T̂ + λÛ∣Ψ⟩. (1)

The corresponding pair-density is given by

Pλ
2(r, r

′
) = N(N − 1)

× ∑
σ1...σN

∫ ∣Ψλ(rσ1, . . . , rNσN)∣2 dr3 . . .drN ,
(2)

and the underlying xc hole is given by

hλxc(r, r
′
) =

Pλ
2(r, r

′
)

n(r)
− n(r′). (3)

The electrostatic potential of the xc hole provides a definition (i.e.,
with the conventional DFT gauge11,19,38,39) for the xc energy density
of the xc hole,

wλ(r) =
1
2 ∫

hλxc(r, r
′
)U(∣r − r′∣)dr′. (4)

Then, we can write the xc functional in terms of wλ(r) as

Exc[n] = ∫
1

0
dλ∫ drn(r)wλ(r). (5)

B. The MRF functional
Next, we summarize the key features of the MRF. In contrast

to traditional density functional approximations, which use (semi)
local quantities and Kohn-Sham (KS) orbitals,4,40,41 MRF approx-
imations involve integrated quantities of the density. Specifically,
they build from the number of electrons,

Ne(u; r) = ∫ Θ(∣r − r′∣ − u)n(r′)dr′, (6)

within a given radius u around a point r. Here, Θ(x) = {1∀x ≥ 0, 0∀x
< 0} is the Heaviside step function.

This quantity is naturally suited to strong correlation problems.
Its advantage can be understood by considering two well-separated
H atoms (dissociated H2), which must not interact with a Coulomb
potential since both atoms are neutral. By taking a < u < D (where
a is the radius of an H atom and D is the distance between nucleii),
we see that Ne(u; r) ≈ 1 for r near each nucleus. This function can
thus accommodate the −1/D net attraction between electrons and
electrons and nucleii to balance out the 1/D repulsion between the
two nucleii. Approximations to the correlation energy can thereby
be built from Ne to give DFAs which correctly accommodate the
long-range interactions.

Vuckovic and Gori-Giorgi12 recently introduced an approxi-
mation that uses Ne(u; r) to capture the behavior described above.
Their approximation involves calculating

ai(r) = N−1
e (i − 1; r), (7)

Si(r) =
∂Ne(u; r)

∂u
∣
u=ai(r), (8)

σi(r) ≈
1
2
e−bSi(r)

2

, (9)

Ri(r) = N−1
e (i − 1 + σi; r), (10)
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which are, respectively, the radius ai of a sphere around point r
which contains exactly i − 1 electrons; the rate Si at which that radius
is changing; a small fluctuation σi that reflects how slowly the radius
changes, which can thus identify regions which are free of electrons;
and the radius Ri containing i − 1 + σi electrons. The model contains
just one parameter b. In this work, we keep it fixed to its value b = 5
bohrs2 from previous work12 on three-dimensional (3D) electronic
systems. We thus ensure the 1D systems studied here are treated
consistently with 3D counterparts.

Finally, the xc functional within the MRF approximation is
written as

EMRF
xc = Tc[n] + ∫ drn(r)wMRF

1 (r), (11)

wMRF
1 (r) =

1
2

N

∑
i=2

U(Ri(r)) −
1
2
vH(r), (12)

whereU(R) is the Coulomb interaction between electrons at distance
R, i.e., 1/|r −r′| typically, and where vH(r) is the Hartree potential.

We remark that ∫drn(r)wMRF
1 (r) of Eq. (12) does not contain

Tc[n], the kinetic energy contribution to the xc energy. This is also
the case with the exact xc functional from the SIL from which the
MRF is inspired. Thus, here we compare the MRF quantities with
the exact w1(r), rather than with the exact λ-averaged xc energy den-
sity. More generally, one can, in principle, define the λ-dependent
σλi (r) and, by integration of the corresponding wλ

MRF[n] from 0 to 1,
one can recover Tc[n]. This concept, together with other possibilities
for recovering Tc[n] in the MRF, was recently discussed by Vuck-
ovic.13 Nevertheless, for simplicity, we restrict here to the analysis of
the λ = 1 case.

Let us briefly return to dissociated H2 to consider how the
approximation correctly captures asymptotic behaviors. We have
two electrons, and thus only i = 2 contributes to the MRF. As before,
we use a as the radius of an H atom and D ≫ a as the distance
between them. We thus find, for r in the vicinity of atom HA,

a2(r ∈ HA) ≈ a, S2(r ∈ HA) ≈ 0, (13)

σ2(r ∈ HA) ≈
1
2

, R2(r ∈ HA) ≈ D. (14)

Some of these quantities are illustrated in Fig. 1
The finding that R2 ≈ D follows from the fact that we can only

capture an additional half an electron by extending our sphere well
into the region containing HB. Finally, for the sum of the Hartree
and xc energy, which we denote here by EHxc, we get

FIG. 1. Illustration of MRF in H2.

EMRF
Hxc = 2∫

HA

drn(r)
1
2

1
D
=

1
D

, (15)

where we usedTc = 0 for the H atom. The prefactor 2 comes from the
fact that we exploited the symmetry of the problem to integrate only
in the region of HA. Adding this result to 1/D from the nucleii and
−2/D from the electron-nuclear interactions gives a net zero long-
range interaction, as desired.

III. RESULTS
We now turn to results. Before doing so, we describe the com-

putational procedure employed and give the precise description of
the one-dimensional model that we use.

Before proceeding, however, we will briefly reiterate why the
one-dimensional model is a useful test bed for theories, despite the
fact that it can only mimic real chemistry and it does not have the
richness of three-dimensional structures. Despite these limitations,
one-dimensional models have the following points in their favor: (i)
they can provide a tunable connection between strongly and weakly
correlated systems, in a fashion that is clearly representative of three-
dimensional equivalents;25,27,28,42 (ii) they can be efficiently solved
exactly (to within a desired numerical accuracy) for both the inter-
acting and noninteracting (KS) systems; (iii) they allow for direct
visualization due to the reduced dimension. They are thus more than
sufficient to illustrate key features of the approximations we make
here.

A. Computational details
The Hamiltonian of our 1D molecular model with two elec-

trons is

Ĥ = t̂1 + t̂2 + +v(x1) + v(x2) + U(∣x1 − x2∣), (16)

where our electrons interact via soft-Coulomb potential,

U(u) =
1

√
1 + u2

. (17)

Here, t̂1/2 = −1
2

∂2

∂x2
1/2

, and we employ the following external potential:

v(x) = −U(x + D/2) − [U(x −D/2) + ηe−(x−D/2)
2

], (18)

where D is the bond length of our molecule, which consists of a left
atom placed at − D/2 and right atom at + D/2.

The role of η is to control the well depth on the right atom, the
well becomes deeper as η increases, giving an effective local charge of
Z = 1 + η for the “nucleus,” which correctly approaches 1/|x −D/2| at
longer distances. A very similar effect can be achieved by replacing
−U(x − D/2) = −[1 + (x − D/2)2

]
− 1

2 by −[Z−2 + (x − D/2)2
]
− 1

2

for the second atom. The case Z = 1 (η = 0) is representative
of a strongly correlated H2 diatom dissociation process, whereas
Z ≥ 1.5 (η ≥ 1

2 ) is more similar to dissociation of an ionic diatom like
LiH due to different effective ionization potentials on the different
atoms.

Finding the (real) eigenstates Ψ(k) (x, x′) (and energies E(k))
of the two-electron Hamiltonian of Eq. (16) is equivalent to finding
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the eigenstate of a Hamiltonian with one electron moving in a two-
dimensional potential. Thus, we employ simple numerics imple-
mented in Python to find groundstate wavefunctions Ψ(0)(x, x′)
of Eq. (16), from which we can obtain the density n(x) = 2∫Ψ(0)

(x,x′)2dx′ and pair-density P2(x, x′) = 2Ψ(0)(x,x′)2.

B. Setting the stage
Once we have obtained the density n(x) and the physical pair-

density Pλ=1
2 (x, x′), we can obtain a wide range of energy properties.

This includes the xc energy densities at λ = 1 which will be com-
pared with those from the MRF model. First, for N = 2 unpolarized
systems, it is trivial to obtain the exchange energy density from,

wx(x) ≡ wλ=0(x) = −
1
4
vH(x). (19)

From these, we can obtain

wc,1(x) = w1(x) −w0(x), (20)

wc,MRF(x) = wMRF
1 (x) −w0(x), (21)

for the correlation-only energy densities.
In addition to having easy-to-obtain exact solutions, both for

interacting and noninteracting systems, two-electron systems offer
another advantage, the MRF system can be reverse engineered so
that we can compare the results of approximations against their
values obtained from exact theory.

For N = 2, we can use exact wλ=1(x) [obtained from the ground
state of Eq. (16)] to obtain the exact Rλ=1

i (x). We do this by inverting
Eq. (12) to obtain

Rλ=1
2 (x) = U

−1
(vH(x) + 2wλ=1(x)). (22)

From the radius of Eq. (22), we can obtain the exact σλi (r), which
will be given by

σλ=1
2 (x) = Ne(Rλ=1

2 (x); x) − 1. (23)

With all key quantities defined, including exact ones, we are
now ready to dig deeper into the MRF to study how well it works
and how it might be improved.

C. MRF and pair-densities
To begin, we explore the pair-density. For a given Ψ, the

electronic repulsion energy Vee is explicitly given in terms of its
pair-density. Thus, for Vλ

ee[n] = ⟨Ψλ[n]∣Û∣Ψλ[n]⟩, we have

Vλ
ee[n] = ∫

drdr′

2
U(r, r′)Pλ

2(r, r
′
). (24)

Then, invoking the adiabatic connection [as in Eq. (5)], we can write
Hxc energy as EHxc[n] = ∫10 dλVλ

ee[n]. However, we focus here on
the KS (λ = 0) and fully interacting cases (λ = 1), rather than the
λ-averaged quantities.

Furthermore, since the electronic interaction depends only on
the distance between particles, we can rewrite (24) as

Vλ
ee[n] = ∫

drdu
2

U(u)Pλ
2(r;u), (25)

where Pλ
2(r;u) is the “radially” averaged pair-density,

Pλ
2(r;u) = ∫ dr′Pλ

2(r, r
′
)δ(u − ∣r − r′∣), (26)

at point r and radius u. The equivalent Vλ=1
ee energy expression for

the MRF [using (12)] is

VMRF
ee = ∫

dr
2
n(r)∑

i≥2
U(RMRF

i (r))

≡ ∫
drdu

2
U(u)n(r)∑

i≥2
δ(u − RMRF

i (r)), (27)

where δ is the Dirac delta function. Thus, the effective pair-density
in MRF is

PMRF
2 (r;u) = n(r)∑

i≥2
δ(u − RMRF

i (r)). (28)

In one-dimension, Pλ
2(r;u) becomes Pλ

2(x;u) and PMRF
2 (r;u)

becomes PMRF
2 (x;u) = n(x)∑i≥2 δ(u − R

MRF
i (x)).

The MRF pair-density of Eq. (28) is inspired by the form of
the exact SIL pair-densities. Since it is given by the sum of δ func-
tions, one can easily object that this pair-density cannot represent its
physical counterpart. However, as discussed in Ref. 13, PMRF

2 (r;u)
[or PMRF

2 (x;u)] serves in the MRF framework as the auxiliary object
with the purpose of delivering accurate xc energy densities (to be con-
sidered later). In this context, Eq. (28) can be made to yield exact xc
energy densities by replacing the radii Ri by their exact counterparts,
obtainable for two electron systems via Eq. (22).

In Figs. 2 and 3, we show exact Pλ=1
2 (top panels) and KS Pλ=0

2
(bottom panels) as a function of x and u for a selection of 1D
molecules. We include on these figures R2(x), obtained from Eq. (10)
(white dashed lines, top panels only), which for our two electron
systems is the only contributing radius in the MRF. For compar-
ison, lines representing the exact Rλ=1

2 (x) (solid cream lines) and
RKS

2 = Rλ=0
2 (white dotted-dashed, bottom panels only), obtained

from Eq. (22), are also shown. As the effective MRF pair-potential
PMRF

2 (x;u) is scaled by n(x), we also show the density (between the
panels—teal) for reference.

We see immediately that the MRF radius passes through the
centre of the high-charge-density regions of P2(x; u) in almost all
cases, which is consistent with its exact counterpart. This means it
is able to reproduce, on average, the interactions between regions,
which becomes more accurate as the regions are further apart in the
dissociation limit.

In contrast, the KS pair-density has weak contributions at this
point and a more significant contribution for u → 0. This second,
unphysical contribution comes from the failure of a single-reference
system to reproduce the multireference physics of strong correla-
tions.2,8 It manifests in our figures as a very poor effective radius
RKS

2 , as shown in dot-dashes in the lower panels.
The one case where MRF struggles a little is with η = 0.5 and

D = 4 (top middle panel of Fig. 3), where the bond breaking leads
to an asymmetry in charge between the left and right atoms. In this
case, the MRF radius (the dashed line) is not as asymmetric as its
exact counterpart (cream solid line). This is a particularly challeng-
ing case; however, as in the dissociation limit, there is only a small
energy gap between the strongly correlated ground-state and the
charge transfer excited state. In the interim region (D = 4) shown
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FIG. 2. Plots of P2(x; u) for D = 2, 4, 6 (left to right) with Z = 1 (η = 0.0). We show the interacting (top) and Kohn-Sham (bottom) pair-densities, with navy indicating no
(pair)-density and brighter colors indicating increased contributions. Plots include Rλ=1

2 (x) obtained from the exact calculation (solid cream line); RMRF
2 (x) to represent

PMRF
2 (x;u) (white dashes, top only); and RKS

2 = R
λ=0
2 to represent a traditional KS picture (white dotted-dashed, bottom only). The density is shown in teal between the plots

to highlight the regions which contribute to the total energy.

here, these two states are in superposition and are thus extremely
difficult to model.

D. Exchange/correlation energy densities
Let us now understand how the MRF works. Returning to the

exact and approximate solutions, we recognize that σλ2(x) [Eq. (9)]
is a more physically relevant quantity than the radius Rλ

2(x). The
σ2 quantity physically represents the deviation from the expected
charge associated with the effective distances between electrons to be
explained in more detail below. The key idea is that for N = 2,
Rλ=1

2 (x) represents the effective distance between electrons i.e., the

distance required to ensure a Coulomb potential giving the correct
potential vH + 2wλ=1; and νλ=1

2 = Ne(Rλ=1
2 (x); x) represents the effec-

tive charge at that distance. Thus, σ2 = ν2 − 1 [see (10) and (23)] is
the deviation from the expected effective charge (νλ=1

i = i − 1).
In Figs. 4 and 5, we show plots of the exact σλ2(x) at λ = 0 and

λ = 1 obtained from Eqs. (22) and (23) for 1D densities from the
ground state of Eq. (16) for different D and η values [Eq. (18)].
These exact σλ(x) curves are compared with those obtained from the
approximation to σλ(x) of Eq. (10). Insets of the same figure compare
the exact wc,λ(x) at λ = 1 with wMRF

c,1 of MRF.
As can be seen from Figs. 4 and 5, the approximate σλ=1(x) of

Eq. (10) is in all cases closer to the exact σλ(x) at λ = 1 than at λ = 0.

FIG. 3. Like Fig. 2 but for Z = 1.5 (η = 0.5).
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FIG. 4. Plots showing exact σλ2(x) quantity for different values of D at Z = 1 [the ground state n(x) of Eq. (16)] with λ = 0 and λ = 1 [obtained from Eqs. (22) and (23)].
Approximate MRF σλ2(x) at λ = 1 has been obtained from Eq. (10) with b = 5. Insets compare the exact and MRF correlation energy density at λ = 1 [Eqs. (20) and (21)].

This confirms, at least qualitatively, that the ansatz of Eqs. (7) and
(10) is well-suited for the description of the electronic interactions
at the physical regime. We can also observe that σλ=1(x) of Eq. (10)
becomes more accurate as the bond length increases, indicating that
it is working to describe strong correlations.

One unappealing feature of the approximate σλ=1(x) arising
from Eq. (10) is that it lies below σ0

2(x) in the bond midpoint region
(in both Figs. 4 and 5 when D = 2). For this reason, the correlation
component wMRF

c,1 (r) becomes unphysically positive in this region
(see the insets of Figs. 4 and 5). This feature has also been observed
in intershell regions of real atoms.13

The insets of Figs. 4 and 5 show correlation energy densities
at λ = 1. It is interesting to note that in the asymmetric case, the
correlation potential displays a “step” structure, which ensures the
correct dissociation of diatoms with different ionization potentials.43

From the inset of Fig. 5 (the asymmetric case), we can see that the
exact wc,1(x) energy densities do not display the step feature as we
increase D. This is because such step is contained in the response (i.e.,
“nonenergy”) part of the correlation potential,44,45 and its origin and
features in 1D systems have been carefully analyzed.28,30

Next, we analyze the origin of these features in more detail by
range-separating the xc energy contributions into short-range (sr)
and long-range (lr) components.

E. Range-separation of MRF
To gain more insight into the accuracy of the MRF functional,

we compare its range-separation resolved xc energy densities with
its exact counterparts. Here, we carry out the range-separation only

at the energy level. That is, we apply it to key quantities like pair-
densities Pλ=1

2 (r, r
′
) and the corresponding xc hole hλ=1

xc (r, r′).
Range-separation involves dividing key terms (usually ener-

gies) into short-range (sr) and long-ranged (lr) components for the
purpose of understanding and/or approximating them separately.
Here, we use it to partition the total energy density, wλ(r) = wsr

λ (r)
+ wlr

λ (r), into short- and long-range components.
To define the sr and lr components for our 1D systems, we first

partition the soft-Coulomb potential,

U(u) = Usr
(u) + U lr

(u), (29)

using Usr
(u) = U(u)e−μ

2u2
, where μ is a parameter with inverse

length dimension. This lets us decompose wλ(r) [using Eq. (3)] into
sr and lr contributions,

wλ(r) =
1
2 ∫

hλxc(r, r
′
)Usr
(∣r − r′∣)dr′

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
wsr

λ (r)

+
1
2 ∫

hλxc(r, r
′
)U lr
(∣r − r′∣)dr′

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
wsr

λ (r)

. (30)

This separation can also be applied to the λ-dependent correlation
energy density wc,λ(r) = wλ(r) − w0(r) (in terms of the electro-
static potential of the correlation hole) to obtain its range-separated
contributions wsr

c,λ(r) = wsr
λ (r) − wsr

0 (r) and wlr
c,λ(r) = wlr

λ (r)
−wlr

0 (r).

FIG. 5. The same plots as in Fig. 4, but at Z = 1.5 or η = 0.5.
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Before reporting any tests, let us first take a moment to con-
sider and clarify the effective range of strong correlation. Strong
correlation that pertain to bond dissociation, e.g., for H2 or LiH, is
a long-range functional phenomenon, in the sense that the energy at
point x can be highly sensitive to the density n(x′) at distant point
x′ (because of superposition physics). However, from the perspec-
tive of the xc hole and its electrostatic potential (i.e., the xc energy
density), the phenomenon is mostly short-ranged and midranged.

For example, if we place a reference electron in the vicinity of
one of the two nuclei in an H2 diatom, the xc hole localizes around
this nucleus to remove an electron that surrounds it.46,47 This feature
is why generalized gradient approximations (GGAs) suffer less than
Hartree-Fock theory from dissociation errors: the semilocal hole in
a GGA is always short-ranged, unlike the exchange hole which can
delocalize across multiple species.48

To illustrate this point more directly, let us return to our 1D
model system for partially dissociated H2. Figure 6 compares the
“radially” averaged xc hole,

FIG. 6. Illustration of the short-rangedness of the hole density. Top panels show
hλxc(x,u) and hλxc(x,u)U(u) at λ = 0 (“Kohn-Sham” – hx) and λ = 1 (“inter-
acting”). Although strong correlation is considered to be long-range phenomena,
the effect on the xc hole and energy densities are mostly short- (or mid) ranged
where it matters for energies. Key length scales (per Fig. 1) are indicated, and
x is chosen to lie on one of the nucleii. The density is shown in teal in an inset.
The bottom panels show contours of P2(x; u) and hxc(x; u) to further highlight the
short-rangedness of the latter quantity. The origin is chosen, as in the top panel,
to lie on the left nucleus–the other nucleus is at D.

hλxc(x;u) = ∫ dx′hλxc(x, x′)δ(u − ∣x − x′∣), (31)

at λ = 1 against its KS counterpart (λ = 0: hx), using Eq. (3). Note that
the key length scales, such as a and D, are also indicated in this fig-
ure, allowing us to clearly see that the effect on the xc hole and energy
densities are short- (or mid) ranged. The bottom panels further illus-
trate the point by showing the pair-density P2 (clearly long-ranged)
and hole density hxc (short-ranged where it counts, i.e., where the
density is significant).

Now, we are ready to analyze the MRF from a range-separated
perspective. In Fig. 7, we thus compare sr [wsr

λ (r)] and lr [wlr
λ (r)]

energy densities for both MRF and exact theory. These energy den-
sities have been evaluated on n(x) pertaining to v(x) of Eq. (18),
with Z = 1 and D = 2 a.u., Z = 1, D = 6, and Z = 1.5, D = 6.
We set μ = 0.6, corresponding to damping over a length scale 1.7
bohr radii, a similar scale to that used on common functionals
like Heyd-Scuseria-Ernzerhof (HSE).33

First, we focus the lr and sr xc energy densities at D = 2
a.u. Interestingly, even in this case, where the overall accuracy of
wMRF

1 (x) is lower (in comparison with those at large D), its sr com-
ponent is still in a good agreement with the corresponding exact
energy density.

We can also see from Fig. 7 that the long-range MRF energy
density for the two strongly correlated model systems correspond to
D = 6 (at both Z = 1.0 and Z = 1.5); the sr MRF xc energy density
is more accurate than its lr part, most obviously seen in the light
purple shaded curves. This is despite the fact that the lr part is much
smaller in absolute energy than the sr part, meaning the error in the
sr component is smaller in absolute terms and significantly smaller
in relative terms. Given that the MRF functional has been designed
to capture the physics of bond dissociation, this makes sense in our
picture based on the short-rangedness of the xc hole.

We next observe that in all cases in Fig. 7, the lr MRF xc energy
densities (the less accurate of the two range-separation resolved
components) again become accurate at large |x| because the MRF
xc energy densities display the correct asymptotic behavior.13 We
remark that by virtue of our Usr and U lr definitions, wlr

1 (x) behaves
asymptotically as w1(x): − 1

2∣x∣(∣x∣ → ∞), whereas wsr
1 (x) decays

much faster.
Staying with Fig. 7, we can also see that for Z = 1 and D = 6

a.u., both sr and lr components of wMRF
1 (x) are in closer agreement

with the exact energy densities. Even in this stretched case, we can
see that the sr component of wMRF

1 (x) is again more accurate than
the corresponding lr component. The same result holds for Z = 1.5
and D = 6 a.u., highlighting the accuracy of MRF in the dissociation
limit.

F. Short-range vs midrange
In Sec. III E, we used μ = 0.6 a.u.−1 for our range-separation

parameter, similar to μ = 0.3 Å−1 used in HSE and other functionals.
However, there is no reason to assume that this value will be the
“right” one for MRF. Thus, in this section, we explore the variation
of the energy with μ.

In Fig. 8, we show the mean absolute error of the lr and sr
energy contribution,

∣Err∣ = n(x)[∣wsr
MRF(x) −w

sr
1 (x)∣ + ∣w

lr
MRF(x) −w

lr
1 (x)∣] ,
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FIG. 7. Plots showing exact range-separated wλ(x)—short-range part (top) and long-range part (bottom) for μ = 0.6—energy densities at λ = 1 (black solid lines) and λ = 0
(orange dashed-dotted) and that of MRF at λ = 1 (purple dashes). Shown are Z = 1, D = 2 (left), Z = 1, D = 6 (left), and Z = 1.5, D = 6 (right). The light purple shaded
region indicates deviation of the MRF energy density from the exact one at λ = 1. Densities are shown above the figure (light teal) for illustrative purposes. The inset of the
long-range plots zooms into the region of greatest error.

as a proxy energy measure to help determine the optimal choice of
range separation parameter. In 3D, a similar analysis might be bet-
ter performed by using, e.g., a good GGA for the long-range part.
For 1D systems, we do not have access to range-separated GGAs.
We show the cases Z = 1 and D = 2 and 6 reported previously. We
replace Z = 1.5 and D = 6 by the case Z = 1.5 and D = 4, for which
the MRF pair-density was poorest (right-panel, Fig. 3) and which
consequently is the most difficult test of MRF that we found.

It is clear from the plots that setting μ = 0.3 seems to give the
best overall results. It performs similarly to μ = 0.6 in the two Z = 1
cases, but better in the hard Z = 1.5/D = 4 case. We note that
μ = 0.3 corresponds to a length scale of 3.3 a.u (∼7 Å), twice the
length scale of μ = 0.6. For this reason, it should probably be classed
as a midrange, rather than a short-range.

To further explore this dependence, in Fig. 9, we show the
short-range energy contribution wsr of the most difficult case
(Z = 1.5, D = 4) with μ ∈ {0.3, 0.6, 1.0}. It is clear from the plot that
the reason that μ = 0.3 outperforms its shorter-ranged counterparts
is that the error varies in sign, rather than being consistently over-
estimating and underestimating. This is not entirely surprising since
the MRF functional is designed around the physics of dissociation
so might be expected to perform best on a length scale relevant to
dissociation processes.

However, before unequivocally supporting a smaller μ, we
should consider one important point: 1D molecules provide a use-
ful, relevant, and controllable demonstration of dissociation physics,
but they do not have the richness of chemistry found in three-
dimensions. Thus, while these results do suggest that small values

FIG. 8. Errors ∣Err∣ = n(x)[∣wsr
MRF −w

sr
1 ∣ + ∣w

lr
MRF −w

lr
1 ∣] for various μ, for Z = 1, D = 2, Z = 1, D = 6, and Z = 1.5, D = 4. We show D = 4 a.u. rather than 6 a.u. in the last

case to illustrate the most difficult system we found.
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FIG. 9. Like top row of Fig. 7 except we set Z = 1.5 and D = 4 in all plots and vary μ ∈{0.3, 0.6, 1.0}.

of μ should not be discounted in future studies on real molecules,
they are certainly not conclusive in that regard.

IV. CONCLUSIONS
In this manuscript, we have studied correlations in 1D

molecules, using exact results and the multiple radii functional
(MRF) and Kohn-Sham (Hartree-exchange, λ = 0) approximations.
We began by investigating the pair-density, which showed that MRF
could deal with some quite difficult cases. We then focused attention
on range-separation of energies in terms of its effect on the energy
density and the electronic pair-density.

We found that MRF was, surprisingly, better for short-range
interactions than for long-range ones, at least at the energy level.
While this result may seem counter-intuitive, in fact, it is clear
from an illustrative example and the calculations we performed
that the main contribution to energies is from the correlation hole,
which becomes more localized in strongly correlated systems. In this
context, the result is less surprising.

What is difficult to pin down from our two-electron one-
dimensional molecules is whether these effects are predominately
short-ranged or more midranged. If the latter, a double range-
separation might be advisable for optimal use of MRF to divide the
energy into short-range terms to be treated using Hartree-Fock the-
ory, midrange terms to be treated by MRF, and long-range terms to
be treated using semilocal density functional approximations.

In addition to potentially making calculations more accurate,
our findings may have practical advantages for implementation of
MRF. Unlike the weakly decaying (soft) Coulomb potential, short-
range and midrange Coulomb potentials decay quickly. Thus, only
radii [from Eq. (10)] less than a cutoff radius need to be evalu-
ated. This could potentially lead to more efficient evaluation of MRF
energies.

We thus argue that further exploration of range-separation
in the MRF context is warranted. In particular, range-separation
should be investigated in the context of true three-dimensional sys-
tems to better understand the precise length scales that the MRF gets
right and wrong. Work along these lines is underway.
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