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ABSTRACT: Density-corrected density functional theory (DC-DFT) is
enjoying substantial success in improving semilocal DFT calculations in a
wide variety of chemical problems. This paper provides the formal theoretical
framework and assumptions for the analysis of any functional minimization
with an approximate functional. We generalize DC-DFT to allow the
comparison of any two functionals, not just comparison with the exact
functional. We introduce a linear interpolation between any two approx-
imations and use the results to analyze global hybrid density functionals. We
define the basins of density space in which this analysis should apply and give
quantitative criteria for when DC-DFT should apply. We also discuss the effects
of strong correlation on the density-driven error, utilizing the restricted HF
Hubbard dimer as an example.

1. INTRODUCTION AND BACKGROUND

Kohn−Sham density functional theory (KS DFT)1 is widely
popular as an electronic structure method.2 Despite the
proliferation of choices of approximate functionals, most
calculations use one of a few standard approximations that
have been available for the past 20 years, namely, generalized
gradient approximations (GGAs) or global hybrids with some
enhancements, such as van der Waals corrections3 and range
separation.4 While moderately accurate for many useful
properties, these functionals suffer from well-known deficien-
cies, including unbound anions, poorly positioned eigenvalues,
incorrect molecular dissociation curves, reaction barrier
underestimation, and many others,5,6 thus the never-ending
search for improved functionals.
Over the years, many pioneers have shown in specific cases

that the use of approximate functionals on Hartree−Fock
(HF) densities can yield surprisingly accurate results. This
includes the early work of Gordon and Kim for weak forces,7

Janesko and Scuseria for reaction barriers and other proper-
ties,8,9 and the original works of Gill et al. testing GGAs and
hybrids for main group chemistry that led to the adoption of
DFT for widespread use in chemistry.10 Even the prototype of
KS-DFT, the X−α method of Slater,11 was designed to yield
approximations to HF potentials, which led to an inconsistency
between the associated energy functional and its derivative, the
potential. (See ref 12 for a recent discussion of this topic.) An
analysis of this difficulty was part of the impetus for the KS
paper.
The errors made in DFT calculations were formally

separated into two contributions, a functional error and a
density-driven error, thereby yielding a formal framework in
which the two errors could be analyzed independently.13 This
led to the theory of density-corrected DFT (DC-DFT), which
explains the success of the early work, and has provided a
simple procedure for significantly improving the results of

semilocal DFT calculations in many situations. For example,
for halogen and chalcogen weak bonds, which have been used
in databases to train van der Waals functionals, the errors are
dominated by density-driven errors in the semilocal functional,
so such databases cannot be used for that purpose without a
correction.14 In addition to the standard semilocal functionals,
it has recently been shown that in specific situations the
energetic accuracy of other density functionals, such as the
nonlocal functionals based on adiabatic connection models,15

can be greatly improved by using the HF density and
orbitals.16,17

Thus, DC-DFT, especially in the form of HF-DFT, in which
the Hartree−Fock density is used in place of the exact density,
is an extremely practical procedure for improving the
energetics of abnormal DFT calculations (i.e., those dominated
by density-driven errors, but in which the approximate
functional is still highly accurate).
Here, we give a detailed formal analysis of the differences

that arise between the self-consistent solutions of two distinct
density functionals. We consider any two functionals, including
the possibility of two different approximations. Thus, DC-DFT
is a special case of this more general analysis. We also consider
other special cases, including the one-electron case, for which
we can calculate all of the quantities arising from our analysis
that require access to the exact functional and the exact
density. The accuracy of PBE for the H atom is due to a
spurious cancellation of both density and functional errors as
well as exchange and correlation errors. We extend our analysis
to energy differences that are of key importance in chemistry.
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2. DENSITY FUNCTIONAL ANALYSIS
In DFT,1,2,6,18,19 the ground-state energy and density of a
system with an external potential v are given by

E E nminv
n

v= [ ]
(1)

The total energy functional Ev[n] is given by

E n F n n vv[ ] = [ ] + · (2)

where n·v = ∫ d3r n(r) v(r) and where F[n] is the universal
part of the functional commonly partitioned as

F n T n U n E nS H XC[ ] = [ ] + [ ] + [ ] (3)

TS[n] is the KS noninteracting kinetic energy functional,
UH[n] is the Hartree energy, and EXC[n] is the exchange-
correlation (XC) functional, which in practical calculations
must be approximated. Starting from a given approximate or
exact XC functional EXC[n], we can write the corresponding
approximate universal functional as

F n F n E nSH XC[ ] = [ ] + [ ] (4)

where FSH[n] is the universal functional within the Hartree
approximation, which neglects exchange and correlation
effects: FSH[n] = TS[n] + UH[n]. The minimization in eq 1
is performed over all N-representable densities, and the density
that achieves this minimum we denote by nv. We define an
energetic measure of any arbitrary density difference from nv as

D n E n n E 0v v v v[Δ ] = [ + Δ ] − ≥ (5)

where eq 1 ensures that Dv[Δn] ≥ 0 for any isoelectronic
change in nv (i.e., ∫ d3r Δn(r) = 0). We refer to this as the
energetic distance from the minimum. We can use this
measure to say that n is sufficiently close to nv if

D n nv v c[ − ] ≤ Δ (6)

provided that Δc is sufficiently small.
Throughout this work, we encounter simple quadratic

density functionals, which correspond to normal forms in
algebra, and we write

A n r r A n nr r r rd d ( , ) ( ) ( )3 3∫ ∫[Δ ] = ′ ′ Δ Δ ′
(7)

To gain more insight into the Dv[Δn] functional, we can
expand Ev[n] around its minimum in a Taylor series20

E n n E K n n
1
2

( )v v v v
3[ + Δ ] = + [Δ ] + Δ

(8)

where Δn(r) = n(r) − nv(r), and Kv(r, r′) is given by

K
E n

n n
r r

r r
( , )

( ) ( )v
v

n n

2

v

δ
δ δ

′ =
[ ]

′
| =

(9)

Combining eqs 2, 4, and 9, we can write Kv(r, r′) as

K f n f nr r r r r r( , ) ( , ) ( , )v v vSH XC′ = [ ] ′ + [ ] ′ (10)

where

f n
T n

n n
r r

r r r r
( , )

( ) ( )
1

f r r

SH

2
S

( , )S

´ ≠ÖÖÖÖÖÖÖÖÖÖÖÖÖÖÖ ÆÖÖÖÖÖÖÖÖÖÖÖÖÖÖÖ

δ
δ δ

[ ] ′ =
[ ]

′
+

| − ′|
′ (11)

and

f n
E n

n n
r r

r r
( , )

( ) ( )XC

2
XCδ

δ δ
[ ] ′ =

[ ]
′ (12)

is the static XC kernel. Combining eqs 5 and 8, for an arbitrary
and sufficiently small density difference (i.e., Dv[Δn] ≤ Δc), we
can write Dv[Δn] as

D n K n
1
2v v[Δ ] ≈ [Δ ]

(13)

For any Δn(r), satisfying ∫ d3r Δn(r) = 0, we define

n nr r( ) ( )βΔ = Δβ (14)

In this way, we can see how far one can go away from nv(r), in
the Δn(r) direction, and yet stay within Δc energetically.
Plugging eq 14 into eq 13, we can easily find the β = βc
parameter at the boundary (i.e., the one satisfying Dv[Δnβ] =
Δc), and it is given by

K n
2

v
c

cβ =
Δ
[Δ ] (15)

Note again that we use the notation of eq 7 for the Kv[Δn]
quantity. The principal goal of the theory outlined here is to
carefully analyze the origin of the energy difference that arises
between a pair of different density functionals when applied to
the same system/process. For a given pair of approximate (or
one approximate and the other exact) XC functionals EXC

(0) and
EXC
(1), we define their difference as

E n E n E nXC XC
(1)

XC
(0)Δ [ ] = [ ] − [ ] (16)

For a given v(r), the difference in the two ground-state
energies arising from a pair of different functionals is

E E n E nv v v v v
(1) (1) (0) (0)Δ = [ ] − [ ] (17)

By simply adding and subtracting Ev
(1)[nv

(0)] from the r.h.s. of
eq 17, we find

E D n E nv v v v
(1)

XC
(0)Δ = − [−Δ ] + Δ [ ] (18)

where Δnv(r) = nv
(1)(r) − nv

(0)(r). Reversing the choice of 1 and
0, we also find

E E n D nv v v vXC
(1) (0)Δ = Δ [ ] + [Δ ] (19)

Given that Dv
(j) ≥ 0, eqs 18 and 19 dictate the following chain

of inequalities:

E n E E nv v vXC
(1)

XC
(0)Δ [ ] ≤ Δ ≤ Δ [ ] (20)

By virtue of eq 16, the ΔEXC[nv
(i)] quantity represents the

difference between the two functionals evaluated on each
density. Therefore, we can identify ΔEXC[nv

(1)] and ΔEXC[nv
(0)]

of eqs 18 and 19 as functional-driven terms. On the other
hand, Dv

(0)[nv
(1)] and Dv

(1)[nv
(0)] are the density-driven terms

because they are given by the difference between the same
energy functional evaluated at different densities. Generalizing
the ideas of DC-DFT,13,14,21−25 for any pair of density
functionals, we classify a ΔEv energy difference as energy- or
density-driven. We consider energy-driven ΔEv as those whose
functional-driven terms in eqs 18 and 19 strongly dominate the
density-driven terms (i.e., |ΔEXC[nv

(0)]| ≫ Dv
(1)[−Δnv] and

|ΔEXC[nv
(1)]| ≫ Dv

(0)[Δnv]). On the other hand, in density-
driven cases the density-driven terms are no longer negligible.
In Figure 1, we show the two density-driven and the two
functional-driven contributions to their energy difference in a
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cartoon representing an energy-driven difference (top panel)
and a density-driven difference (bottom panel). Measures that
quantify density-driven character in a given system (again for a
given pair of functionals) will be introduced and discussed in
Section 5.

3. DENSITY FUNCTIONAL INTERPOLATION
To derive an exact expression for ΔEv by smoothly connecting
EXC
(0)[n] to EXC

(1)[n], we introduce the α-parameter-dependent
XC functional:

E n E n E nXC
( )

XC
(0)

XCα[ ] = [ ] + Δ [ ]α
(21)

The corresponding total energy functional reads as

E n F n n v E n E nv
E n

( )
SH XC

(0)
XC

v
(0)

´ ≠ÖÖÖÖÖÖÖÖÖÖÖÖÖÖÖÖÖÖÖÖÖÖÖÖÖÖÖÖ ÆÖÖÖÖÖÖÖÖÖÖÖÖÖÖÖÖÖÖÖÖÖÖÖÖÖÖÖÖ α[ ] = [ ] + · + [ ] + Δ [ ]α

[ ] (22)

and achieves its minimum at nv
(α)(r). Thus, its ground-state

energy is given by Ev
(α) = Ev

(α)[nv
(α)]. More generally, we

consider the following energy difference:

E E E E n E nv v v v v v v
( ) ( ) (0) ( ) ( ) 0 (0)Δ = − = [ ] − [ ]α α α α

(23)

Writing

E
E

dv
v( )

0

( )

∫ α
α

Δ = ′
∂
∂ ′

α
α α′

(24)

from eq 22, via the Hellmann−Feynman theorem, it follows
that

E
E nv

v

( )

XC
( )

α
∂
∂

= Δ [ ]
α

α
(25)

Plugging eq 25 into eq 24, we find

E E ndv v
( )

0
XC

( )∫ αΔ = ′Δ [ ]α
α

α′
(26)

Equation 26 is analogous to, but different from, the adiabatic
connection formula for the correlation energy in DFT.26−28

When α = 1, eq 26 becomes

E E ndv v
0

1

XC
( )∫ αΔ = Δ [ ]α

(27)

This shows that the energy difference between two KS
calculations with different XC functionals can be found by
knowing only the difference functional and the interpolating
ground-state density. Obtaining ΔEv from eq 27 requires a
knowledge of nv

(α)(r) for all α values between 0 and 1. To find
nv
(α)(r), we write the corresponding Euler equation

v n v n vr r r( ) ( ) ( ) 0SHXC
(0)

XCα[ ] + Δ [ ] + ≐ (28)

where vSHXC
(0) [n](r) = δF(0)[n]/δn(r). Because the number of

electrons does not change throughout this work, the potentials
in eq 28 or any subsequent equations are determined only up
to a constant, as denoted by the dot over the equals sign. The
density that satisfies eq 28 is nv

(α)(r), and by expanding it
around nv

(0)(r) as nv
(α)(r) = nv

(0)(r) + αΔnv(α)(r) (∫ d3r nv
(α)(r) =

0), we can write eq 28 as

v n K n v n

f n n v

r r r

r r

( ) ( ) ( ( )

( )) ( ) 0
v v v v

v v

SHXC
(0) (0) (0) ( )

XC
(0)

XC
(0) ( )

α α

α

[ ] + [ ·Δ ] + Δ [ ]

+ [Δ [ ]·Δ ] + ≐

α

α
(29)

where we simplified the notation for the following integral:

A n r A nr r r r( ) d ( , ) ( )3∫[ ·Δ ] = ′ ′ Δ ′
(30)

At α = 0, eq 28 becomes

v n vr r( ) ( ) 0vSHXC
(0) (0)[ ] + ≐ (31)

Plugging eq 31 into eq 29 gives

K n n v n f n nr r r( ) ( ) ( ) 0v v v v v v
(0) (0) ( )

XC
(0)

XC
(0) ( )α[ [ ]·Δ ] + Δ [ ] + [Δ [ ]·Δ ] ≐α α

(32)

Also, by plugging Kv
(α)(r, r′) = Kv

(0)(r, r′) + αΔf XC(r, r′) (eqs
10 and 22) into eq 32, we obtain

r K n n v nr r r rd ( , ) ( ) ( )v v v v
3 ( ) (0) ( )

XC
(0)∫ ′ [ ] ′ Δ ′ ≐ −Δ [ ]α α

(33)

In principle, Δnvα(r′) can be obtained by solving eq 33, and we
can write the solution in terms of the inverse of Kv

(α)[nv
(0)]:

n r K n v nr r r r( ) d ( , ) ( )v v v v
( ) 3 ( ) 1 (0)

XC
(0)∫Δ = − ′ { } [ ] ′ Δ [ ] ′α α −

(34)

We expect that Δnv(α)(r) in eq 34 can be fairly approximated by
Δnv, and this is equivalent to approximating nv

(α) via the
following linear interpolation:

n n nr r r( ) ( ) ( )v v v
( ) (0) α≈ + Δα

(35)

Figure 1. Cartoon showing the density-driven and functional-driven
contributions to ΔEv (eqs 18 and 19) in an energy-driven difference
(top panel) and a density-driven difference (bottom panel).
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To explore in what situation the approximation of eq 35
becomes exact, we now write nv

(α) as nv
(α)(r) = nv

(1)(r) −
α̅Δnv(α)′, where α̅ = 1 − α. Repeating the steps given by eqs 28
to 34, we find

n r K n v nr r r r( ) d ( , ) ( )v v v v
( ) 3 ( ) 1 (1)

XC
(1)∫Δ = − ′ { } [ ] ′ Δ [ ] ′α α′ −

(36)

In this way, when Δnv(α)′(r) is equal to Δn(r) in eq 34, then the
exact nv

(α) is indeed given by the r.h.s of eq 35.
To obtain the leading order of Ev

(α) in powers of α, we again
set nv

α(r) = nv
(0)(r) + αΔnv(α)(r). Then, Ev

(α) becomes

E n F n n n v n v

E n n E n n
v v v v v v

v v v v

( ) ( )
SH

(0) ( ) (0) ( )

XC
(0) (0) ( )

XC
(0) ( )

α α

α α α

[ ] = [ + Δ ] + · + Δ ·

+ [ + Δ ] + Δ [ + Δ ]

α α α α

α α (37)

We can expand Ev
(α)[nv

(0) + αΔnv(α)] around nv
(0)(r) and write

Ev
(α) in powers of α:

E E n E n v n v n

v n n K n

( )
1
2

( )

v v v v v v

v v v v

( ) (0) (0)
XC

(0)
SHXC
(0) (0) ( )

2
XC

(0) ( ) (0) ( ) 3

α α

α α

= [ ] + Δ [ ] + [ ] + ·Δ

+ Δ [ ]·Δ + [Δ ] +

α α

α αi
k
jjj

y
{
zzz (38)

Combining eqs 31 and 38, the third term on the r.h.s of eq 38
vanishes:

E E n E n K n

v n n

1
2

( )

v v v v v v

v v

( ) (0) (0)
XC

(0) 2 (0) ( )

XC
(0) ( ) 3

α α

α

= [ ] + Δ [ ] + [Δ ]

+ Δ [ ]·Δ +

α α

α

i
k
jjj

y
{
zzz (39)

Using eq 33, we can further simplify eq 39:

E E n E n v n n
2

( )

v v v v v v
( ) (0) (0)

XC
(0)

2

XC
(0) ( )

3

α α

α

= [ ] + Δ [ ] + Δ [ ]·Δ

+

α α

(40)

From eq 40, we can see that Ev
(α) truncated at second order in

α can be obtained from the XC energies and XC potentials at
the end points. We can also use the following functional
expansion

E n n E n

v n n

2

2
( )

v v v

v v

XC
(0) ( )

XC
(0)

XC
(0) ( ) 2

α

α α

Δ + Δ = Δ [ ]

+ Δ [ ]·Δ +

α

α

Ä

Ç
ÅÅÅÅÅÅÅÅ

É

Ö
ÑÑÑÑÑÑÑÑ

(41)

and plug it into eq 40 to obtain

E E n E n n
2

...v v v v v
( ) (0) (0)

XC
(0) ( )α α= [ ] + Δ + Δ +α α

Ä

Ç
ÅÅÅÅÅÅÅÅ

É

Ö
ÑÑÑÑÑÑÑÑ (42)

Similarly, writing nv
(α) = nv

(1)(r) − α̅ Δnv(α)(r), we can expand
Ev
(α) around nv

(1) to obtain

E E n E n n
2

...v v v v v
( ) (1) (1)

XC
(1) ( )α α= [ ] − ̅Δ − ̅ Δ +α α

Ä

Ç
ÅÅÅÅÅÅÅÅ

É

Ö
ÑÑÑÑÑÑÑÑ (43)

Both results are consistent with applying eq 26 and expanding
only the density to first order in α. In Section 4, we will
illustrate the usefulness of the formalism developed in this
section for connecting a global hybrid functional to its parent
GGA.

4. SPECIFIC CASES
4.1. Quantifying Errors with DC-DFT. There has recently

been a great amount of interest in quantifying the errors in
density in DFT.29−33 However, in ref 25, it was shown that the

theory of DC-DFT provides a natural and unambiguous
measure of the density error. With that measure, it was not
possible to distinguish the densities of empirical and
nonempirical functionals based on their self-consistent
densities alone.
To understand the background for this, we first must

distinguish ground-state KS DFT from other areas of
electronic structure. The primary purpose of such calculations
is to produce the ground-state energy as a function of nuclear
coordinates. Indeed, in principle, one can deduce the density
(and hence any integral over it) from a sequence of such
calculations via the functional derivative with respect to the
potential. Of course, such calculations produce KS potentials,
orbitals, and eigenvalues as well as densities and ground-state
energies, and all such quantities can be compared (for systems
for which the calculation is feasible) to their exact counterparts
extracted from a more accurate quantum solver.34−37 These are
of great interest as inputs to response calculations, such as in
linear-response TDDFT or GW methods, and such procedures
might be extremely sensitive to such inputs. However, in
ground-state DFT, the main prediction is the energy of the
many-body system, for which the KS scheme is simply a
brilliant construct that balances efficiency and accuracy.
Intuitively, one feels that a better XC potential must yield a

better density, and in turn, a better density must yield a better
energy. After all, the Hohenberg−Kohn (HK) theorem tells us
that we reach the ground-state energy only with the exact
density and exact KS potential. But such formal statements give
no measure of the quality of a density or a potential. Even a
well-defined mathematical norm between two densities that
vanishes as the exact density is approached does not really
provide what we wish for because an infinite number of
arbitrarily different norms can be constructed. All can tell us
when we have found the exact density but give differing results
for how far away we are from it. A deep part of the problem is
that both potentials and densities are functions of r and so are
not characterized by a single number.
As mentioned in ref 25, the basic theorems of DFT give us

an ideal solution to this dilemma via DC-DFT. To write this
measure in the language of the density functional analysis, we
consider now the specific case where EXC

(0)[n] = EXC[n] is the
exact XC functional and where EXC

(1)[n] = ẼXC[n] is an
approximate functional. Note also that this is the basis of all
DC-DFT applications. For a given v(r), the difference between
the two corresponding ground-state energies becomes the
error in the approximate ground-state energy:

E E Ev v vΔ ̃ = ̃ − (44)

For this special case, eq 19 becomes

E E n E n E n E nv v v v v
E n

v v v v
E n D nv v v vXC

ideal
´ ≠ÖÖÖÖÖÖÖÖÖÖÖÖÖÖÖÖÖÖ ÆÖÖÖÖÖÖÖÖÖÖÖÖÖÖÖÖÖÖ ´ ≠ÖÖÖÖÖÖÖÖÖÖÖÖÖÖÖÖÖÖ ÆÖÖÖÖÖÖÖÖÖÖÖÖÖÖÖÖÖÖΔ ̃ = [ ] − [ ] + [ ] − [ ]∼ ∼ ∼∼

Δ [ ] Δ [Δ ]= [Δ ]∼ ∼ ∼∼ (45)

where Δñv = ñv − nv. For any system, the variational principle
(eq 1) ensures that ΔEideal[Δñv] is always a positive energy for
any ñv(r) and vanishes only for the exact density. Another
advantage of ΔEideal[Δñv] over other metrics is that this
measurement of density error is given in terms of the energetic
consequences. A single number, instead of a function that
depends on r, determines how good a given approximate
density is. As such, it even provides a useful scale for density
differences. For example, if this measure yields results in the
microhartree range, then why would one even care about
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errors in the density? Given that it is very difficult in practice to
evaluate the exact functional on an approximate density (e.g.,
refs 38 and 39), DC-DFT procedures use the following
equation instead:

E E n E n E nv v v v v
E D n

v
E

XC

v vD F

´ ≠ÖÖÖÖÖÖÖÖÖÖÖÖÖÖÖÖÖÖ ÆÖÖÖÖÖÖÖÖÖÖÖÖÖÖÖÖÖÖ ´ ≠ÖÖÖÖÖÖÖÖÖÖ ÆÖÖÖÖÖÖÖÖÖÖΔ ̃ = [ ] − [ ] + Δ [ ]∼∼ ∼ ∼

Δ =− [−Δ ] Δ∼Ù (46)

Equation 46 allows us to decompose ΔẼv, the total error made
by ẼXC[n] and ñv, into the functional error ΔEF = ΔẼXC[nv]
and the density-driven error ΔED = −D̃v[−Δñv], which is
much more practical than the ideal because it needs to be
evaluated only on the approximate functional. We can in fact
expect ΔED to be a practical proxy for the intractable
Eideal[Δñv] measure. When the approximate density is
sufficiently close to its exact counterpart (more precisely,
when the two inequalities hold: Dv[Δñv] ≤ Δc and D̃v[−Δñv]
≤ Δc), we can write ΔEideal[Δñv] as

E n K n
1
2v v v

idealΔ [Δ ̃ ] ≈ [Δ ̃ ]
(47)

and D̃v[−Δnv] as

D n K n
1
2v v v ṽ [−Δ ̃ ]≈ ̃ [Δ ̃ ]

(48)

From eqs 47 and 48, we can see that if the approximate
functional has accurate curvature, then the D̃v[−Δñv] = −ΔED
measure is very similar to ΔEideal[Δñv].
4.2. Illustration. Figure 2 illustrates many aspects of the

analysis described so far. Here we consider the hydrogen atom

and the BLYP GGA.40,41 We choose this example carefully
because (a) we have easy access to the exact density because
this is a one-electron case and (b) our functional correctly has
no correlation energy (because the LYP correlation vanishes
for all fully spin-polarized systems). Thus, when we interpolate
between BLYP and HF, we create a global hybrid with a
fraction α of exact exchange (EXX):

E n E n E n E n( )XC
( )

XC
GGA

X X
GGAα̃ [ ] = ̃ [ ] + [ ] − ̃ [ ]α

(49)

For this specific case, ẼXC
α [n] reduces to

E n E n E n E n( )XC
( )

X
B88

X X
B88α̃ [ ] = ̃ [ ] + [ ] − ̃ [ ]α

(50)

where EX
B88[n] stands for the exchange functional of Becke.40

For the ΔẼv
(α) = Ẽv

(α) − Ev energy difference (i.e., the error in
the hybrids functional), we can rewrite eq 46 as

E D n E nv v v
E

v
E

( ) ( ) ( )
XC
( )

D
( )

F
( )

´ ≠ÖÖÖÖÖÖÖÖÖÖÖÖÖÖÖÖÖÖ ÆÖÖÖÖÖÖÖÖÖÖÖÖÖÖÖÖÖÖ ´ ≠ÖÖÖÖÖÖÖÖÖÖÖ ÆÖÖÖÖÖÖÖÖÖÖÖΔ ̃ = − [−Δ ] + Δ [ ]∼ ∼α α α α

Δ Δα α

Ù
(51)

where Δñv(α) = ñv
(α) − nv. In eq 51, we can recognize α-

dependent density-driven and functional errors. In the same
manner, we can rewrite eq 45:

E E n D nv v v v
( )

XC
( ) ( ) ( )Δ ̃ = Δ ̃ [ ̃ ] + [Δ ̃ ]α α α α

(52)

In this case, all error contributions (eqs 51 and 52), as shown
in Figure 2, vanish at α = 1. On the extreme left (α = 0), we see
that the functional error exceeds the self-consistent error and
the density-driven error is negative, as it should be. (Note that
−ΔED is plotted in Figure 2.) The functional error is exactly
linear, going to zero as α → 1. Notice that the density-driven
error must always behave parabolically around α = 1.
We also compare the two choices of reference for Dv (blue

and red), finding that they are almost identical. This is telling
us that the BLYP density is so close to the exact density that
the expansion to second order is fine. Moreover, note that as α
→ 1, the blue and red data points merge and both are on top
of a perfect parabola whose curvature is given by Kv[Δn]
(again as α → 1). Because the self-consistent error is the sum
of the functional and density-driven errors, we can deduce its
curve just from the values at α = 0. Thus, the black line is
always a parabola if the densities are sufficiently similar, as is
the case here. Note that we can see that the energetic
difference between the Dv values (blue and red plots) is rather
small, showing that they are indeed sufficiently close that there
are no significant energetic consequences to approximating all
such curves as parabolas.
Finally, we note that, relative to DC-DFT, we have chosen

the two functionals in reverse order: 0 denotes the approximate
functional, and 1 denotes the exact answer. This was done to
make these results more readily comparable to other results for
hybrids. Simply replace α with 1 − α to put Figure 2 in the
correct form for DC-DFT.

4.3. Self-Interaction Error and One-Electron Systems.
For one-electron systems

F n T n E n U n E N, , 0 ( 1)S X H C[ ] = [ ] [ ] = − [ ] = = (53)

Standard DFT approximations typically do not satisfy all of the
conditions of eq 53, and for this reason, they suffer from one-
electron self-interaction error (SIE).6,42 On the other hand, the
HF method is exact for one-electron systems, and thus we can
use the HF method to calculate the functional- and density-
driven term of SIE. This has already been done in Figure 2 for
the BLYP hybrids, and in Figure 3, we apply the same analysis
to hybrids from the PBE functional.43 The PBE correlation
energy, unlike that of LYP, does not vanish for one-electron
systems. For this reason, in the case of the PBE functional we
modify eq 49:

E n E n E n E n( )XC
( )

XC
PBE

X XC
PBEα̃ [ ] = ̃ [ ] + [ ] − ̃ [ ]α

(54)

In this way, we ensure that the error in the PBE hybrid of eq 54
(hereinafter α-PBExc) vanishes at α = 1. Note that this does
not include PBE044 because this PBExc has only 0.75 PBE
correlation at α = 1/4. In Figure 3, we show the density-driven
and functional error in α-PBExc for the hydrogen atom. First,

Figure 2. Various errors in eqs 51 and 52 for the α-BLYP calculations
of the hydrogen atom as a function of the amount of exact exchange
mixing.
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note that the scale of the errors is smaller than that in Figure 2.
We can also see that both the |ΔEF

(α)| and |ΔED
(α)| errors in α-

PBExc decrease with α. Nonetheless, its total ΔE(α) error peaks
at α ≈ 0.5 and nearly vanishes for the PBE functional (the α =
0 case). The fact that the PBE gives almost the exact energy for
the hydrogen atom relies on a cancellation between the
functional and density-driven errors (as well as a cancellation
between exchange and correlation errors).
The same plot for the hydrogen atom obtained with the

regular α-PBE hybrid (eq 49) is shown in Figure 4. Note that

now the α = 1/4 point represents the PBE0 functional. We can
see from Figure 4 that as α approaches 1, the functional error
strongly dominates its density-driven counterpart. Note here
the much larger scale: the self-interaction error in the PBE
correlation functional error yields much larger total energy
errors than in the previous figure, illustrating the increased
error when semilocal correlation functionals are combined with
exact exchange. We can also note that ΔED gets very close to 0
as α approaches 1, although the PBE correlation potential does
not vanish for N = 1 systems.
4.4. Hartree Approximation. Another special case is the

Hartree approximation (i.e., solution of the KS equations with
XC set to zero). In the Hartree approximation, the functional
error is just the XC energy itself, while the density-driven error
is just ΔED = −1/2 f SH[nv

(0), Δn]. To give an illustration, here
we consider again the hydrogen atom and the following
functional: ẼXC

(α)[n] = αEX[n]. The ẼXC
(α)[n] functional allows us

to analyze the errors along the path that connects the Hartree
approximation (α = 0) and the exact functional (α = 1) for the
hydrogen atom. In Figure 5, we show the errors in this

functional as a function of α for the hydrogen atom. As
expected, the scale of errors is much larger than those shown in
Figures 2−4. For the Hartree approximation, one would expect
ED to be different from the ideal, which includes the XC
contributions. However, we can see that the −ΔEideal data
points in Figure 5 are hardly distinguishable from their ΔED
counterparts. This implies that at α = 0 (the Hartree
approximation) we have

f n n f n n, , (H atom)v

E

v

E
S

2
SH

(0)

2ideal
D

´ ≠ÖÖÖÖÖÖÖÖÖÖÖÖ ÆÖÖÖÖÖÖÖÖÖÖÖÖ ´ ≠ÖÖÖÖÖÖÖÖÖÖÖÖÖÖÖÖ ÆÖÖÖÖÖÖÖÖÖÖÖÖÖÖÖÖ
[ Δ ] ≈ [ Δ ]
− Δ − Δ (55)

where f S(r, r′) is the kinetic component of f SH(r, r′) (eq 11).
While Hartree calculations are certainly too inaccurate for

chemical purposes,45,46 one would expect them to have the
greatest delocalization error of any approximate functional
because not even LDA exchange opposes the Hartree energy.
A Hartree calculation might thus prove useful in creating a
nonempirical measure of delocalization to be used in DC-DFT
because surely no sensible XC approximation should produce a
larger density-driven error.

4.5. Pure Density Functionals. So far, we have
considered only approximations to XC within the KS scheme
because this is the most common DFT calculation today by far.
However, there is much interest in developing orbital-free
functionals, especially in contexts in which the KS scheme
becomes too cumbersome.
Because the entire functional F[n] is approximated in such a

scheme, the density is often much poorer than in a KS
calculation. In fact, estimates suggest that simple orbital-free
approximations, such as those used in Thomas−Fermi
theory,47−49 produce sufficiently poor densities that their
errors are dominated by errors in the density (i.e., the density-
driven error is much larger than the functional error in most
calculations). This is seen in total energy calculations of atoms
and of one-dimensional Fermions in a flat box.23 The simplest
DC-DFT in orbital-free DFT is to apply the approximation to
the exact density to eliminate the density-driven error.
To exemplify the error analysis of orbital-free functionals, we

consider here the TF energy functional, whose universal part
reads as

F n T n U n
A r n r

TF
S
TF

d ( )TF 3 5/3
´ ≠ÖÖÖÖÖÖÖ ÆÖÖÖÖÖÖÖ
∫

[ ] = [ ] + [ ]

(56)

with A (3 )TF 3
10

2 2/3π= . The total TF error can be, analogously

to eq 46, partitioned as

Figure 3. Density-driven and functional errors for the α-PBExc (eq
54) calculations of the hydrogen atom as a function of the amount of
exact exchange mixing.

Figure 4. Density-driven and functional errors for the α-PBE (eq 49)
calculations of the hydrogen atom as a function of the amount of exact
exchange mixing.

Figure 5. Density-driven, ideal, and functional errors for the hydrogen
atom calculation with the ẼXC

α [n]= αEX[n] functional.
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E E n E n F nv v v v v
E

v
E

TF TF TF TF TF

D
TF

F
TF

´ ≠ÖÖÖÖÖÖÖÖÖÖÖÖÖÖÖÖÖÖÖÖÖÖÖÖ ÆÖÖÖÖÖÖÖÖÖÖÖÖÖÖÖÖÖÖÖÖÖÖÖÖ ´ ≠ÖÖÖÖÖÖÖÖÖÖ ÆÖÖÖÖÖÖÖÖÖÖΔ = [ ] − [ ] + Δ [ ]
Δ Δ (57)

where ΔFTF[n] = ΔEv
TF[n] = ΔTS

TF[n] − EXC[n]. Here we
calculate ΔED

TF and ΔEF
TF for alkaline earth metals and noble

gases up to krypton (Z = 36). They are computed by utilizing
the following for neutral atoms: EZ

TF ≈ −0.7687Z7/3.50 Highly
accurate energies and densities (i.e., Ev and nv entering eq 57)
have been obtained with PySCF software51 at the CCSD level
within the aug-cc-pVmZ basis set,52 with the largest m available
for each of the atoms. From the plots shown in Figure 6, we

can see that the density-driven component strongly dominates
the total ΔETF error. For example, in the case of the neon atom
(Z = 10) most of the TF error is practically density-driven,
with ΔED

TF/E ≈ 28.4% and ΔEF
TF/E being −1.3%. We

remember that for neutral atoms, as Z → ∞, the TF theory
becomes relatively exact in the sense that it satisfies53−55

E
E

lim 0
Z

Z

Z

TFΔ
→

→∞ (58)

Thus, as Z → ∞, our blue curve in Figure 6 should vanish.
Nevertheless, in Figure 6 we are still far from this limit, as at
our largest Z value (Z = 36) ΔEZ

TF/EZ is around 1/5.
This suggests several important points regarding these

functionals. First, they must always be tested self-consistently,
as in refs 56−58. This is because tests of new orbital-free
approximations on KS densities do not tell us much about their
overall accuracy, given that the density-driven errors can be
very large. At the same time, a comparison of the functional on
the KS density then provides enough information to separate
functional- from density-driven errors, and we expect that even
the KS densities obtained from the (semi)local XC
approximations are sufficiently accurate for this purpose.
Second, reports of failures of TF theory and its extensions
should be revisited to determine if these are density- or
functional-driven. If the former, one should focus on improving
the densities rather than the total energies alone. Third, this
supports efforts59 to approximate the Pauli potential60,61

directly as a density functional, without requiring that the KS
potential be a functional derivative.
In the context of this article, it should prove useful when

comparing two orbital-free approximations to decompose their
differences into functional- and density-driven contributions. If
two different approximations differ in both contributions, then

this would suggest that good aspects of both might be
combined to separately minimize each error.

4.6. Strong Correlation. In our last example, we show that
density-driven errors can become large when systems are
strongly correlated but need not be. Generating a simple
example is not very easy because one needs essentially exact
densities upon which to make evaluations and comparisons.
Fortunately, the two-site two-Fermion Hubbard model is an
example in which all quantities can be determined analytically.
Many relevant KS-DFT quantities have been calculated exactly
and summarized in two recent reviews: one on the ground
state62 and one on linear-response TDDFT.63

For any spin-unpolarized two-electron system (in the
absence of magnetic fields), the restricted HF functional
(RHF) is

F n T n U n /2RHF
s H[ ] = [ ] + [ ] (59)

because half the Hartree is canceled by exchange and
correlation is ignored. In fact, the traditional definition of
correlation energy in quantum chemistry is

E E E nv vC
QC RHF RHF= − [ ] (60)

In the RHF case, we have ẼXC[n] = EX[n], and thus

E n E n E n E nxc X XC CΔ ̃ [ ] = [ ] − [ ] = − [ ] (61)

From eqs 46 and 61, we obtain the functional error of RHF:

E E n EvF C CΔ = − [ ] = − (62)

By subtracting ΔEF from the total error made by RHF, which
is equal to −EC

QC (eq 60), we obtain

E E ED C C
QCΔ = − (63)

For our two-site model, the functional reduces to a simple
function. The onsite occupations are n1 and n2 (i.e., the density
is just two non-negative real numbers). Moreover, because
they always sum to 2, the density is fully represented by their
difference. Likewise, we can choose the average potential to be
zero and represent the inhomogeneity in the potential by a
single number, Δv, the on-site potential difference. If we
choose the hopping parameter t = 1/2, then the only other
parameter is U, the energy cost of double occupation of a site.
The error in RHF and the exact ground-state energy are

explored in Figure 7 for varying levels of correlation and
inhomogeneity. The absolute error increases with U, as
expected. The error in energy for each level of correlation is
most prominent in the symmetric dimer (Δv = 0) and
diminishes and rapidly vanishes beyond Δv larger than U,

Figure 6. Plots showing quantities that involve the density-driven and
functional errors in the Thomas−Fermi method (eq 57) with Z for a
range of small atoms.

Figure 7. Restricted Hartree−Fock Hubbard dimer ground-state
energy (dashed line) and exact Hubbard dimer ground-state energy
(solid line) as functions of Δv for varying values of U. (See ref 62.)
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where the energy becomes linearly correlated with the on-site
potential difference. Thus, the system becomes weakly
correlated for Δv > U.
The functional- and density-driven contributions to this HF

error were then isolated through the use of eqs 60, 62, and 63.
The fraction of the total error attributed to the density-driven
component (ΔED/EC

QC) is shown in Figure 8 for weakly

correlated dimers with values of U of up to 1. As U decreases in
size, both the magnitude of the total error and its density-
driven contribution decrease substantially. For U < 0.5, there is
no Δv for which there is a density-driven contribution greater
than 5% of the total error. Of course, as U → 0, this ratio must
vanish, so this is not unexpected. However, we also see that the
density-driven error vanishes at Δv = 0 for any value of U, no
matter how large, for symmetry reasons. Thus, even a strongly
correlated system might have no density-driven error. More-
over, for Δv > 1 + 2U, again the error is less than 5% as a result
of the correlation being weakened by inhomogeneity. So for
any given U, there is a maximum in the fraction of density-
driven error as a function of Δv, and it is at nonzero Δv.
The density-driven error ratio for more strongly correlated

dimers is shown in Figure 9 and has characteristics identical to

those of the weak correlation plot but on a larger scale. Clearly
the maximum fractional density-driven error becomes much
larger with U and can even exceed −1. We also see that for U >
1 the region of the small density-driven error around Δv = 0
can even increase with U. For fixed Δv, the fraction of the
density-driven error decreases with sufficiently large U. The
relation between the RHF density-driven error and strong
correlation is clearly not trivial.
To avoid confusion, we note that this section has focused on

the density-driven error in RHF. In the more realistic
calculations of weakly correlated systems in the rest of this

work, we often assume that the error is much smaller than the
density-driven error of a semilocal DFT calculation, and hence
HF-DFT yields more accurate energies in such cases. Because
the Hubbard dimer is a site model, there is no genuine
correspondence with semilocal DFT approximations to test
here.

5. ENERGY DIFFERENCES
Key chemical concepts are determined by energy differences
(e.g., atomization energies, ionization energies, barrier heights,
reaction energies, etc.). So far we have focused on total
energies, and in this section we extend our analysis to energy
differences. If, for example, we use an approximate functional
to calculate an energy difference, what is the density-driven
error that pertains to that energy difference? The following
analysis answers this question.
For simplicity, we first look at the energy difference between

systems A and B, whose external potentials are vA and vB,
respectively. This energy difference obtained from a total
energy functional that corresponds to a given EXC

(j) is given by

E E n E nj j j j j
AB
( )

A
( )

A
( )

B
( )

B
( )= [ ] − [ ] (64)

When two functionals are involved, we can also define the
difference between EAB

(1) and EAB
(0):

E E EAB AB
(1)

AB
(0)Δ = − (65)

Plugging eq 64 into eq 65 gives

E E n E n E n E n( )AB A
(1)

A
(1)

A
(0)

A
(0)

B
(1)

B
(1)

B
(0)

B
(0)Δ = [ ] − [ ] − [ ] − [ ]

(66)

Plugging eq 18 into eq 66, we can obtain the counterpart of eq
18 for the energy differences between systems A and B:

E E n E n D n D n
D

AB XC A
(0)

XC B
(0)

A
(1)

A B
(1)

B

AB
(1)

´ ≠ÖÖÖÖÖÖÖÖÖÖÖÖÖÖÖÖÖÖÖÖÖÖÖÖÖÖÖÖÖÖÖÖÖÖÖÖÖÖ ÆÖÖÖÖÖÖÖÖÖÖÖÖÖÖÖÖÖÖÖÖÖÖÖÖÖÖÖÖÖÖÖÖÖÖÖÖÖÖΔ = Δ [ ] − Δ [ ]− [−Δ ] + [−Δ ]
− (67)

Similarly, we can also plug eq 19 into eq 66 to obtain the
counterpart of eq 19 for the energy differences between
systems A and B:

E E n E n D n D n
D

AB XC A
(0)

XC B
(0)

A
(0)

A B
(0)

B

AB
(0)

´ ≠ÖÖÖÖÖÖÖÖÖÖÖÖÖÖÖÖÖÖÖÖÖÖÖÖÖÖÖÖÖÖ ÆÖÖÖÖÖÖÖÖÖÖÖÖÖÖÖÖÖÖÖÖÖÖÖÖÖÖÖÖÖÖΔ = Δ [ ] − Δ [ ] + [Δ ] − [Δ ]
(68)

In eqs 67 and 68, we recognize DAB
(1) and DAB

(0) as the density-
driven terms pertinent to the energy differences between
systems A and B. While Dv

(j) of eq 5, which corresponds to the
total energies, is always greater or equal to 0, its counterpart
that pertains to the energy differences (eqs 67 and 68) does
not have a definite sign. Furthermore, if we look at DAB

(0) =
DA

(0)[ΔnA] − DB
(0)[ΔnB] (eq 68), where DA

(0)[ΔnA] ≥ 0 and
DB

(0)[ΔnB] ≥ 0, we can see that DAB
(0) can easily vanish when

DA
(0)[nA

(1)] ≈ DB
(0)[nB

(1)]. Therefore, DAB
(0) and DAB

(1) can vanish
even when nA

(1) and nB
(1) are drastically different from nA

(0) and
nB
(0), respectively.
The example that involves the energy difference between

systems A and B can be easily generalized to any energy
difference of interest. For instance, consider the following
chemical reaction

R P
l

L

l
m

M

m
1 1

∑ ∑→
= = (69)

Figure 8. Fraction of the error that is density-driven for moderate
values of U, with the 5% contribution contour marked by a red dashed
line.

Figure 9. The same as Figure 8 but from more distant perspectives in
U and Δv. Note the change in the contour/color scale.
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where {Rl} is a set of reactants and {Pm} is a set of products.
Then the energy of this reaction obtained from the Ev

(j)[n]
functional is

E E n E nj

m

M

m
j

m
j

l

L

l
j

l
j

ED
( )

1
P,
( )

P,
( )

1
R,
( )

R,
( )∑ ∑= [ ] − [ ]

= = (70)

The corresponding difference in EED
(j) between the j = 0 and 1

functionals is

E E EED ED
(1)

ED
(0)Δ = − (71)

Then DED
(0) that corresponds to ΔEED is given by

D D n D n
m

M

m m
l

L

l lED
(0)

1
P,
(0)

P,
1

R,
(0)

R,∑ ∑= [Δ ] − [Δ ]
= = (72)

and its DED
(1) counterpart is given by

D D n D n
m

M

m m
l

L

l lED
(1)

1
P,
(1)

P,
1

R,
(1)

R,∑ ∑= [−Δ ] − [−Δ ]
= = (73)

In this section we have shown that once we know the
density-driven terms that pertain to total energies it is easy to
calculate the terms that pertain to energy differences. If we are
again interested in the energy difference between systems A
and B obtained with an approximate functional, first we can
use eq 46 to obtain ΔED of that functional pertaining to the
total energies of systems A and B. Then, following eqs 67 and
68, we can easily calculate ΔED that pertains to the desired
energy difference. It will be ΔED = ΔED[A] − ΔED[B]. The
same analysis can be extended to differentials, such as those
determining equilibrium bond lengths or transition-state
structures.

6. CONCLUSIONS
We have given a detailed account of the considerations that led
to the recent successes of density-corrected DFT. We have also
generalized the theory to allow different approximate func-
tionals to be compared in the same way that DC-DFT allows
one approximation to be compared with exact results. We have
shown that typical density differences between reasonably
accurate functionals can be shown quantitatively to be close
enough to allow treatment via density functional analysis
expansions truncated at second order. We consider different
special cases of our analysis and note that DC-DFT is just one
of these. For a given pair of density functional approximations,
we also discuss their relative abnormality (i.e., the situation in
which the density-driven terms strongly dominate the energy
difference obtained with two different approximations).
We have noted many pioneering efforts in the chemistry

literature in which density-corrected calculations were
performed, usually on the basis of intuition. We also point
out that, as long ago as 1996, Levy and Görling advocated the
use of self-consistent exact-exchange calculations, with a
correction defined to produce the exact ground-state energy
as a functional of the “wrong” EXX density.64 For purposes of
calculating energies, the approach of Levy and Görling is nearly
equivalent to HF-DFT, given that the EXX and HF densities
are probably indistinguishable. Of course, we advocate this
procedure only for abnormal systems because in normal
systems we expect the density from the standard semilocal
approximations to be more accurate than that of HF.

Finally, we note that of course it is highly unsettling to run
KS calculations in this non-self-consistent fashion. Many
advantages that are often taken for granted, such as the
exactness of the Hellmann−Feynman theorem in the basis-set
limit, are no longer true, and many corrections need to be
coded. However, all information about the density can be
extracted from a sequence of total energy calculations because

n
E

v
r

r
( )

( )
vδ

δ
=

(74)

Treating HF as EXX, this leads to a predicted change in the
density of a HF-DFT calculation relative to a self-consistent
DFT density:

n
E n E n

v
r

r
( )

( )
( )

DFT HF DFT DFTδ
δ

Δ = [ ] − [ ]
(75)

Thus, in principle, one could calculate the improvement to the
density predicted by HF-DFT and any other properties
depending only on the density.
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