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ABSTRACT: Second-order Møller−Plesset perturbation theory (MP2) approx-
imates the exact Hartree−Fock (HF) adiabatic connection (AC) curve by a straight
line. Thus, by using the deviation of the exact curve from the linear behavior, we
construct an indicator for the accuracy of MP2. We then use an interpolation along
the HF AC to transform the exact form of our indicator into a highly practical MP2
accuracy predictor (MAP) that comes at a negligible additional computational cost.
We show that this indicator is already applicable to systems that dissociate into
fragments with a nondegenerate ground state, and we illustrate its usefulness by
applying it to the S22 and S66 datasets.

1. INTRODUCTION
The adiabatic connection (AC) formalism connects a single-
particle picture to the fully interacting system in different
electronic structure theories.1−12 As such, it has played an
important role in the development of both density functional
theory (DFT) and wavefunction theory (WFT) methods. On
the DFT side, the AC provides justification and rationalization
of widely popular hybrid13−15 and double hybrid func-
tionals,16−18 and it has been used for the construction of
other classes of density functional approximations.19−28 A
simple geometric construction of the AC curve has been used
to obtain a lower bound to the correlation energy in DFT,24

and it has been used to rationalize the amount of exact
exchange in the widely used PBE0 hybrid functional.14,29 On
the WFT side, correlation enegies from the Møller−Plesset
perturbation theory arise from the weak-interaction expansion
of the the Hartree−Fock (HF) AC.30 It was also recently
proposed how the AC formalism can be used to recover
missing correlation energy for a broad range of multireference
WFTs.12,31,32

In the present paper, we use the AC formalism to gain more
insights into the performance of second-order perturbation
theory, and in the spirit of existing quantum-chemical
diagnostic tools,33−35 we aim here at providing an indicator
for the accuracy of second-order perturbation theories. Our
construction is very simple and uses the fact that in the second
order perturbation theories (PT2; in both DFT and HF
variants of the AC formalism) the AC curve is approximated by
a straight line, whose slope is equal to twice the PT2
correlation energy. Thus, the two PT2s are more accurate, the
more linear the exact AC curve is. Following this, a remarkably
simple geometric construction of the AC curves yields an
indicator for the accuracy of the PT2 methods.24 In the first
part of the paper, we compare the exact HF and DFT AC
curves for the helium isoelectronic series and report the

corresponding values of our indicator. Then, in the rest of the
paper, we use an interpolation along the HF adiabatic
connection formalism to transform the exact form of our
indicator into a practical tool for predicting the accuracy of
MP2. We show that this tool is readily applicable to systems
that dissociate into fragments with nondegenarate ground
states. Applying it to the S22 and S66 datasets, we illustrate the
usefulness of our indicator for predicting failures of MP2 when
applied to noncovalently bonded systems.

2. THEORY

We briefly review the basics of the AC formalism in DFT and
HF theory. In either theory, we define a coupling-constant λ-
dependent Hamiltonian. In DFT, it reads as4−6

λ̂ = ̂ + ̂ + ̂λ λH T V VDFT
ee

DFT
(1)

where T̂ is the kinetic energy operator, and V̂ee is the electron−
electron repulsion operator. The λ̂V DFT

operator represents a

one-body potential, which forces Ψλ
DFT, the ground state of eq

1, to integrate to the physical density ρ = ρ1 for all λ values. At
λ = 1, V̂λ

DFT is equal to V̂ext, the (nuclear) external potential.
The corresponding HF AC Hamiltonian is given by (see, e.g.,
refs 11 and 36)

λ λ̂ = ̂ + ̂ + ̂ + − ̂ + ̂λH T V V J K(1 )( )HF
ext ee (2)
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where J ̂ = J[̂ρHF] and K̂ = K̂[{ϕi
HF}] are the standard HF

Coulomb and exchange operators, respectively, that depend on
the HF density ρHF and occupied HF orbitals ϕi

HF. Thereby,
these two operators are computed once in the HF calculation
and do not depend on λ. The HF density arises from the HF
Slater determinant, Ψ0

HF, the minimizer of Ĥ0
HF, which is the

usual Fock operator. A key difference between the two ACs is
that the density of Ψλ

HF (the ground state of the Hamiltonian

of eq 2) varies with λ, whereas the density of Ψλ
DFT is always

forced to be that of the physical system. But at λ = 1, Ĥ1
DFT

=

Ĥ1
HF= Ĥ, and thus, Ψ̂1

DFT
= Ψ1

HF = Ψ.
To avoid confusion regarding the λ-dependent Hamiltonian

of eq 2, which connects the Fock operator (λ = 0) to the
physical Ĥ, we note that the Hartree−Fock energy of quantum
chemistry simply corresponds to ⟨Ψ0

HF | Ĥ | Ψ0
HF⟩. In either

theory,

= ⟨Ψ| ̂ |Ψ⟩ − ⟨Ψ | ̂ |Ψ ⟩E H Hc 0 0 (3)

and the AC formula for the correlation energy follows in both
cases from the Hellmann−Feynman theorem

∫ λ= λE W dc
0

1

c, (4)

In DFT, the underlying AC integrand Wc, λ is given by

= ⟨Ψ | ̂ |Ψ ⟩ − ⟨Ψ | ̂ |Ψ ⟩λ λ λW V V (DFT)c, ee 0 ee 0 (5)

whereas its HF counterpart is

= ⟨Ψ | ̂ − ̂ − ̂ |Ψ ⟩ − ⟨Ψ | ̂ − ̂ − ̂ |Ψ ⟩λ λ λW V J K V J K (HF)c, ee 0 ee 0

(6)

In DFT (eq 5), Ψ0 is the Kohn−Sham wavefunction, and in
the HF AC (eq 6), Ψ0 is the HF Slater determinant, which
minimizes Ĥ. Utilizing the expansion of Wc, λ

DFT/HF at small λ up
to the n-th order, we can write

∑ λ=λ
=

−W mEn

m

n
m m

c,
( )

2
c
PT 1

(7)

where Ec
PTm is the correlation energy from the m-th order

perturbation theory. The Ec
(n) correlation energy corresponding

to the AC integrand of eq 7 is then given by

∑=
=

E En

m

n
m

c
( )

2
c
PT

(8)

Within the HF AC, Ec
PTm is obtained from Møller−Plesset

(MP) perturbation theory (PT = MP), whereas in the DFT
case, Ec

PTm is obtained from Görling−Levy perturbation theory
(PT = GL).37,38 By truncation to the second order in λ,Wc, λ is
approximated by a straight line

λ≈λW E2c,
DFT/HF

c
PT2

(9)

which sets Ec
DFT/HF ≈ Ec

PT2. Both MP2 and GL2 theories are
pillars of electronic structure theory, and their use is
widespread in many calculations. Besides the widespread use
of the MP2 method and its extensions in their standalone
versions (see, e.g., ref 39. for a review), the PT2 correlation
energy is also used as an ingredient for double hybrids.40−42

Figure 1. DFT and HF AC curves for the selected members of the helium isoelectronic series. Dashed lines represent the AC curves from the
second-order perturbation theory, 2Ec

PT2 λ. The numbers in square brackets are the relative errors of Ec
PT2: (Ec

MP2 − Ec
HF)/Ec

HF in the case of HF AC,
and (Ec

GL2 − Ec
DFT)/Ec

DFT in the case of DFT AC.
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3. ILLUSTRATIONS
In Figure 1, we show the AC curves in DFT and HF theory for
the members of the helium isoelectronic series, namely, for H−,
He, Be2+, and Ne8+. For H− and He, the second derivatives of
both Wc, λ

HF and Wc, λ
DFT (w.r.t. λ) is plotted in Figure 1 for λ

values between 0 and 2. The AC curves have been obtained
from the Ψλ

HF/DFT wavefunctions at the full-CI/aug-cc-pCVTZ
level.43 The DFT AC curves have been taken from refs 44 and
45, while those of the HF AC have been obtained from the
Ψλ

HF wavefunction that we construct in the present work (the
full details are given in the Supporting Information). While
both AC curves decrease with λ, their convexities can be
different, and that is evident from Figure 1. As it can be seen
from Figure 2, Wc, λ

DFT is convex for both systems. In fact, Wc, λ
DFT

is believed to be always convex (or at least piecewise
convex),24 and this is supported by the highly accurate
numerical evidence.23,44,45 On the other hand, we can see from
Figure 2 that the convexity of Wc, λ

HF is not definite. For H−,
Wc, λ

HF is concave up to λ ∼ 1.5, and then it becomes convex. For
He, the convexity changes later, at λ ∼ 3.4. In fact, although
often concave at small λ, we know that Wc, λ

HF must change
convexity at larger λ to approach a finite asymptotic value36

W∞, c
HF when λ → ∞.
Staying with Figure 1, we can notice that the curvatures of

both DFT and HF AC curves are the strongest in the case of
H−, and then it decreases as we increase the nuclear charge, Z.
Thus, the relative errors in the corresponding GL2/MP2
correlation energies also decrease with Z (even though the
GL2 overestimates the magnitude of Ec

DFT here, and MP2
underestimates the magnitude of Ec

HF in all cases).
Furthermore, the DFT and HF curves are getting closer to
each other as Z increases, and for Ne8+, the two curves are
nearly overlapping.

4. PRACTICAL PREDICTOR FOR THE ACCURACY OF
THE MP2 THEORY WHEN APPLIED TO
NONCOVALENT SYSTEMS
4.1. Construction. The accuracy of Ec

PT2 depends on how
linear the exact Wc,λ is. Thus, we use here a quantity defined in
ref 24 as an indicator of accuracies of the two-second order
perturbation theories. This indicator is defined by24

λ =
′

W

Wext
c,1

c,0 (10)

The λext quantity is simply a value of λ at which the
extrapolated PT line (Wc, λ = λW0′ = 2λEc

PT2) reaches the Wc, λ
= Wc,1 horizontal line. As such, it represents a dimensionless
measure of the curvature of ACs. For the AC convex in λ
(within the relevant λ region between 0 and 1), λext needs to be
less than 1. For these curves, the error of PT2 vanishes as λext
approaches 1 (from below). Thus, when the AC curve is a
straight line, X is equal to 1, and the PT2 is exact. For the AC
curve concave in λ (again within the relevant λ region between
0 and 1), λext is greater than 1, and for these AC curves, the
error of PT2 also vanishes when λext approaches 1 (from
above). To illustrate this, in Figure 3, we show λext for the

members of the helium isoelectronic series. In the case of HF
ACs, the underlying λext value for H

− is ∼1.7; for He, it drops
to ∼1.4, and then it further decreases with Z. In the case of
DFT ACs, the underlying λext value for H− is ∼0.6; then for
He, it increases to ∼0.8 and then further increases with Z. In
both DFT and HF cases, λext approaches 1 (although from
different directions) as Z increases, given that both MP2 and
GL2 correlation energies become exact in the large Z limit of
the helium isoelectronic series.23,38 We can also see from
Figure 3 that λext pertaining to the DFT AC approaches 1 faster
than its HF counterpart. This mirrors the fact that the error of
GL2 decreases more quickly than that of MP2 at larger Z
(Figure 1).
So far, we have discussed the differences between the HF

and DFT AC curves, and in the remainder of this paper, we
focus only on HF AC, aiming to provide a practical tool for
predicting the accuracy of MP2. The quantity of eq 10, via
Wc,1, requires the knowledge of the fully interacting wave-
function, and thus, its direct use as an indicator for the
accuracy of MP2 is impractical. We aim at circumventing this
problem by obtaining Wc,1

HF via interpolation between the
weakly and strongly interacting limits of the ACs. This idea was
proposed by Seidl and co-workers in the context of the DFT
AC.20,46 Recent papers have also explored its use in the context
of the HF AC, obtaining rather good results for interaction
energies, particularly47,48 (but not only)49 of noncovalently
bonded systems. To use this approach in the HF AC context,
we employ the following SPL (after Seidl, Perdew, and Levy)
interpolation form46

λ
= − +λ ∞

∞

−i

k

jjjjjjjj
i

k
jjjjj

y

{
zzzzz

y

{

zzzzzzzz
W W

E
W

W( ) 1 1
4

c,
SPL

c,
c
PT2

c,

1/2

(11)

where W = {W1, ..., Wk} is the set of input ingredients from
which the interpolation is built, which in this case is W = {W0,
W0′, W∞}, with W0 = Ex, W0′ = 2Ec

PT2, and Wc, ∞ = W∞ − W0.

Figure 2. Curvature of the HF and DFT AC curves, W′c, λ′ = ∂
2Wc, λ/

∂λ2, for H− and He. The inset zooms in on the region of the plots for
the λ domain between 0 and 1. The DFT AC fitting functions used in
this figure are given in the Supporting Information.

Figure 3. λext’s for both DFT and HF AC curves for the helium
isoelectronic series as a function of nuclear charge, Z.
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This interpolation form has been used extensively in the
literature.23,24,28,50,51 We should immediately remark that Wc, λ

SPL

for total energies is always convex, and as such, it cannot
provide a good model for the HF adiabatic connection of a
given system, and thus here, we do not attempt to build the
MP2 accuracy predictor for total energies based on Wc, λ

SPL.
However, as most often in chemistry, we are interested here in
interaction energies. At least for noncovalently bonded
systems, interpolations like the SPL one for interaction
energies work extremely well in the HF case,47,48 pointing to
the fact that the interaction energy HF adiabatic connection
curve is probably, most of the times, convex and, in general,
well-modeled by the difference between two convex curves, as
we are going to detail in the following.
Considering a bound system (e.g., a molecular complex) M

whose individual fragments are Fi, we are interested in the
interaction energy AC curve, which is given by

∑= −λ λ λ
=

W M W M W F( ) ( ) ( )
i

N

ic,
int

c,
1

c,
(12)

To compute Wλ
SPL, int(M), we generalize the size-consistency

correction of ref 48 to define

∑= −λ λ λ

i

k
jjjjjj

y

{
zzzzzzW M W M W FW W( ) ( ( )) ( )

i

N

ic,
SPL,int

c,
SPL

c,
SPL

(13)

where W(M) and W(Fi) are the input ingredients of the
complex and of the fragments, respectively. Eq 13 works for a
system M whose fragments Fi have nondegenerate ground
states; as in this case, it is guaranteed thatWc, λ

SPL, int(M) vanishes
when the distance between the fragments is set to infinity. The
use of eq 13 is discussed in more details in the Supporting
Information.
To complete the model, we need W∞

HF, whose exact (fully
nonlocal) form has been recently revealed,36 with ongoing
efforts in exploring whether this form can be actually useful for
building approximations to Ec

HF. For practical reasons here, we
approximate W∞

HF with the point-charge-plus-continuum (PC)
semilocal model evaluated on ρHF(r)52

∫ρ ρ ρ
ρ

≈ [ ] = + |∇ |
∞ ∞

Ä

Ç

ÅÅÅÅÅÅÅÅÅÅ

É

Ö

ÑÑÑÑÑÑÑÑÑÑ
W W A Br

r
r

r( )
( )

( )
dHF PC HF HF 4/3

HF 2

HF 4/3

(14)

where A = − 1.451 and B = 5.317 × 10−3. The correlation part
of W∞

PC is obtained as Wc, ∞
PC [ρHF] = W∞

HF[ρHF] − Ex
HF. It has

been recently shown that the combination of the PC model
approximation and SPL interpolation form of eq 13 yields
rather accurate interaction energies for systems that we
consider in the present work.48 In Appendix, we further
discuss the use of the PC model in this context. We remark
that, in addition to the SPL form, other forms have been
proposed in the literature (see, e.g., refs 49 and 23). However,
for the systems that we consider here, the difference between
the results obtained with the SPL form and other ones is very
small.48

Combining eqs 10, 11, and 13, we find the λext
SPL indicator

that pertains to the interaction HF AC curve of eq 13

λ =
− ∑
λ=W M

E M E F

( )

2 ( ) 2 ( )i
N

i
ext
SPL c, 1

SPL,int

c
MP2

c
MP2

(15)

where Wc, λ = 1
SPL, int(M) is given by

∑

= − +

− − +
∑

∑

λ= ∞
∞

−

∞
∞

−

i

k

jjjjjjjj
i

k
jjjjjj

y

{
zzzzzz

y

{

zzzzzzzz
i

k

jjjjjjjjj

i

k

jjjjjj
y

{

zzzzzz
y

{

zzzzzzzzz

W M W M
E M

W M

W F
E F

W F

( ) ( ) 1 1
4 ( )

( )

( ) 1 1
4 ( )

( )i

N

i
i
N

i

i
N

i

c, 1
SPL,int

c,
PC c

MP2

c,
PC

1/2

c,
PC c

MP2

c,
PC

1/2

(16)

Before employing λext
SPL to test the accuracy of MP2 for weak

interactions, we should note that λext
SPL is, in general, different

from the exact λext for the interaction energies since it uses the
λ = 1 point from Wc, λ

SPL, int(M) (eq 15). In ref 48, it has been
shown that the accuracy of the interaction energies arising
fromWc, λ

SPL, int(M) is on average higher than that of MP2 for the
S66 dataset. Particularly, in the case of dispersion complexes,
the SPL accuracy is 2 times greater than that of MP2.48 To
meaningfully use λext

SPL as a predictor of the MP2 accuracy for
weak interactions, we should also check whether the curvature
of Wc, λ

SPL, int(M) is more accurate than its MP2 counterpart (the
latter has zero curvature since MP2 approximates Wc, λ

int (M) by
a straight line). By resorting to the available data, we can use
the MP3 theory results for the S66 dataset to assess the
accuracy of the Wc, λ

SPL, int(M) initial curvature. Even though the
MP3 itself does not provide a striking improvement over MP2
for the S66 dataset,53 by virtue of eq 7

λ
=

∂
∂

λ

λ=

E
W1

6c
MP3,int

2
c,
int

2
0 (17)

Hence, it provides the exact initial curvature of Wc, λ
int (M). In

Figure 4, we compare the initial curvature of Wc, λ
SPL, int(M)

(divided by 6) against the Ec
MP3 for the interaction energies of

the S66 dataset taken from ref 53. To compute all input
quantities needed for Wc, λ

int (M) pertaining to noncovalent
datasets in this work, we employ the same basis set and other
computational details as in ref 48. The underlying basis set is
aug-cc-pVQZ enhanced with additional basis functions. For
example, this basis set gives the MP2 interaction energies for
the S66 dataset that are within the 1.5% agreement with their
MP2/CBS extrapolated counterparts.
We can see from Figure 4 that the initial curvature of

Wc, λ
int (M) is fairly approximated by the SPL, with an MAE of

0.31 kcal/mol (against Ec
MP3). From Figure 4, we can also see

that the exactWc, λ
int (M) is typically convex at λ = 0, except for 5

Figure 4. Plots comparing the initial curvature of the SPL AC
interaction integrand (eq 13) with Ec

MP3 interaction energies of the
S66 dataset (see eq 17).
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(20th−23th; 59th) out of 66 complexes. As discussed earlier,
one would indeed expect Wc, λ

int (M) to be, most of the times,
convex since MP2 with sufficiently large basis set typically
overbinds complexes bonded by weak interactions. As it can be
seen from Figure 4, four of these complexes belong to the
“hydrogen bonds” subset of S66. In these four cases, the SPL
mispredicts the sign of the initial curvature of the exact AC
interaction integrand. However, on the positive side, the
magnitude of Ec

MP3 in these four cases is relatively small (|Ec
MP3|

≤ 0.25 kcal/mol) in comparison with complexes that have
large positive curvature (24th−29th complex). In the case of
59th complex (belonging to “others”), the curvature is just
slightly negative, and in this case, SPL gets the sign right. This
shows that even though the SPL AC integrand for total
energies (eq 11) is always convex, the SPL AC interaction
integrand (eq 12) can also have a concave region.
As said, the MP2 interaction AC curve has always 0

curvature, and thus, its MAE/6 in predicting the curvature of
Wc, λ

int (M) would be the averaged magnitude of Ec
PT3, which is

0.90 kcal/mol. Thereby, the MAE of SPL in predicting the
initial curvature of Wc, λ

int (M) is 3 times smaller than that of
MP2. For this reason, we expect that λext

SPL for the interaction
energies arising from Wc, λ

SPL, int(M) to be in a fair agreement
with its exact counterpart for weak interactions.
4.2. Results for the S22 and S66 Datasets. With eqs 15

and 16, we have what we need to compute λext
SPL corresponding

to the HF AC for the interaction energies of molecular
complexes bonded by noncovalent interactions. The principal
point of λext

SPL is its use as an indicator for the accuracy of the
MP2 theory. We define the MP2 accuracy predictor (MAP) in
terms of λext

SPL of eq 15: MAP = |1 − λext
SPL| (distance from the

physical λ = 1 point), making the MP2 error increase as the
predictor increases. In Figure 5, we plot the relative error in the
MP2 binding energies as a function of MAP for the S22 and
S66 datasets. Note that only in one case from these two
datasets λext

SPL was greater than 1 (just slightly though), and that
is the 59th complex of the S66 dataset (see the previous
subsection). The MAP values for each complex of the S22 and
S66 datasets are reported in the Supporting Information.
From Figure 5, we can observe a general trend that the MP2

errors on an average decrease as MAP approaches 0 (i.e. the
corresponding interaction AC curve becomes more linear). In
both panels in Figure 5, we have added horizontal-dashed lines
going through the relative errors of MP2 at 10 and 25%. This
enables us to better understand how the MAP discriminates
the MP2 errors, and we can distinguish the following three
regions as follows:

(i) When MAP ≤ 0.19, the errors are typically small (in
S66, they are always less than 7.5%, and here, we have 31
S66 complexes), and for these MAP values, MP2
calculations for weak interactions can be considered
very reliable.

(ii) When MAP is between 0.19 and 0.21 (24 S66
complexes), the error can range from 2.5 to 25% in
the S66. Thus, MP2 calculations for weak interactions
with these MAP values should be treated with caution,
yet based on the analysis here, the errors are expected to
be less than 25%.

(iii) When MAP ≥ 0.21 (10 S66 complexes), the MP2 errors
are large (always greater than 25% for the S66), and for
stacking complexes for which MP2 failures are well
known, they skyrocket (up to 80%). Thus, in these cases,

MP2 calculations are not reliable and could be even
qualitatively wrong.

Also, to better visualize the second and third regions for the
S66 dataset, in Figure 6, we show the same plot as in the
bottom panel of Figure 5 but with an exponential scale on the
x-axis.

In Figure 7, we show the benzene dimer and acetic acid
dimer AC curves obtained from eq 11 together with underlying
MAP values; representing a situation when MP2 is accurate
(the latter case) and when it is not (the former case). We also
calculate MAE and MARE for the three subsets of the S66
dataset, and these are shown in Figure 8, as a function of
averaged MAP pertaining to a given subset. For hydrogen

Figure 5. Relative errors in MP2 binding energies as a function of
MAP for the S22 (top panel) and S66 (lower panel) datasets.

Figure 6. Same as the bottom panel of Figure 4 but with a different
(exponential; e58.4x) scale on the x-axis.
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bonded systems where the averaged MAP value is close to 0,
the AC interaction curves are expected to be highly linear, and
consequently, the MP2 is more accurate for these systems. We
can observe in Figure 8 that MAP increases, as we go from H-
bonded complexes, over complexes classified as “others” (those
bonded by a combination of dispersion and electrostatics) to
complexes bonded by dispersion. This indicates that the
accuracy of MP2 decreases in this order.
In the original S66 publication, the authors have employed

DFT-SAPT analysis to determine the ratio between the
dispersion and electrostatic contribution to the interaction
energy for each of the S66 complexes.53 They found that the
accuracy of MP2/CBS typically increases as the electrostatics/
dispersion ratio increases. To relate their findings to our results
that are shown in Figure 8, we plot MAP as a function of the
dispersion/electrostatics ratio obtained by the DFT-SAPT
energy decomposition. The plot is shown in Figure 9, and the
values for the dispersion/electrostatics ratio for the S66 dataset
have been taken from the original work.53 We can see from
Figure 9 that MAP increases and then saturates with the
dispersion/electrostatics ratio. This indicates that the SPL
interaction AC integrand becomes more linear as the
dispersion component to the interaction energies decreases.
By thinking reverse (“lower MP2 accuracy → more
pronounced curvature of the exact interaction AC curve”),

we can claim that the exact AC interaction curve also becomes
more linear as the dispersion/electrostatics ratio decreases.
At least in a DFT context, Strømsheim et al. have shown that

the exact AC integrand of the dispersion bonded He2 is quite
curved if one looks at the interaction energy, even though the
AC integrand of the complex and monomers (He atom; which
is also shown here) look quite linear.54 Our analysis here shows
that the dispersion interactions also make the curvature of the
HF AC interaction integrand highly pronounced. In both HF
and DFT theories, stronger curvature of the AC integrand is
often interlinked with the presence of “non-dynamical” (static)
electronic correlations.23,24,44,45 However, our findings and that
of Strømsheim et al. indicate that the dispersion interactions
can have the same effect on the AC interaction integrands.
This, in turn, mirrors the difficulties in perturbative treatments
of both dispersion interactions and strong electronic
correlations.

5. CONCLUSIONS AND OUTLOOK
In summary, we use the AC insights to better understand and
predict the accuracy of PT2 theories. We also report the highly
accurate HF AC curves for the helium isoelectronic series and
compare them with their DFT counterparts. We transform the
exact form of our λext indicator into a practical tool (MAP) for
predicting the accuracy of the MP2 method for systems that
dissociate into fragments with nondegenerate ground states. A
key point to note about the MAP predictor is that it practically
comes at no additional computational cost. Computing it by
means of eqs 15 and 16 requires only (beyond the MP2
calculation itself) W∞

PC[ρHF], which is easily computed from
ρHF(r) and its gradient. This practical aspect of the MAP
predictor, combined with its relevance for noncovalent
interactions (NIs) and the popularity of MP2 methods for
NIs, is even more useful in the light of recent findings of
Furche and co-workers.55 Namely, these authors have found
that the performance of MP2 for NIs systematically worsens
with the increase of a molecular size. Thus, they advise caution
when MP2 is used for calculating NIs between large molecules,
given that the results can be even qualitatively wrong. This is
where our MAP can come into play, as it can gauge the
reliability of such calculations (as shown in Figure 5.)
The MAP indicator is presently applicable to systems that

dissociate into fragment with nondegenerate ground states. To
address this, we will obtain exact AC curves for small
covalently bonded diatomics, and then we will use these
curves to get hints on how to transform the exact λext into a
practical indicator that also works for systems that dissociate
into fragments with degenerate ground states.

Figure 7. Interaction AC curves obtained by the SPL interpolation via
eq 11 for the benzene dimer (upper panel) and the acetic acid dimer
(lower panel).

Figure 8. MARE and MAE for the MP2 method as a function of
averaged MAP for the subsets of the S66 dataset.

Figure 9. MAP as a function of the dispersion/electrostatics ratio of
contributions to the interaction energies obtained from the DFT-
SAPT energy decomposition for the complexes of the S66 dataset.
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In future work, we will also explore the possibility of defining
and analyzing the local HF AC curves, as it has been done for
their DFT counterparts.23,24,44−56 This could prove useful in
using the λext indicator locally (i.e., at a given point in space).

■ APPENDIX

PC model and Wλ
HF

As explained in Section 4, while Wc, λ
SPL, int(M) (l.h.s. of eq 13 is

an accurate approximation to Wc, λ
int (M) (r.h.s of eq 12) for

NIs,48 we do not expect the SPL scheme to accurately
approximate the two terms on the r.h.s. of eq 12. Comparing
the size of the MP2 and CCSD(T) total energies, we expect
these two terms to have a concave adiabatic connection curve
for λ between 0 and 1. On the other hand, we expect Wc, λ

int (M)
to be convex (given that MP2 overbinds a vast majority of S22
and S66 complexes). However, the difference between two
SPL curves resulting from eq 12, which we use here to model
Wc, λ

int (M), can in principle also have concave regions. As such, it
could also capture cases in which the interaction HF AC is
concave. In practice, achieving this seems difficult. Namely, in
the case of 20th−23th complexes of Figure 4, Wc, λ

int (M) is
convex, while its exact counterpart has negative initial
curvature. A notable exception is the 59th complex of Figure
4 where Wc, λ

int (M) correctly captures the negative initial
curvature of the exact AC interaction integrand. As said, in
all other S66 complexes, the initial curvature of Wc, λ

int (M) is
positive and that is captured by the SPL model of eq 12.
Overall, the accuracy of the Wc, λ

SPL, int(M) curve for NIs48 results
from an error cancellation between the complex and
monomers. A similar error cancellation has been observed
for the fixed-node error in Quantum Monte Carlo calculations
of NIs.57

In this same light, we discuss in more details the use of
W∞

PC[ρHF] in the SPL interpolation scheme as an approx-
imation to W∞

HF[ρHF]. The PC model was in the first place
designed as an approximation to W∞

DFT[ρ].52,58 The key
building block of this model is the PC cell, which provides a
way to approximate the electrostatic potential of the exchange-
correlation hole in the λ → ∞ limit of DFT AC.52,58 The PC
cell is a sphere of uniform charge around an electron at r, and
its dipole moment, approximated in terms of the density
gradient at r, is set to zero. From the electrostatic potential of
the PC cell, one obtains the gradient expansion approximation
(GEA) expression for W∞

PC[ρ] (eq 14). We note that the exact
W∞

HF[ρHF] is expected to be much lower than W∞
PC[ρHF]. This

is because W∞
PC[ρ] is energetically very close to the exact

W∞
DFT[ρ] (see refs 8 and 51), while the following inequality

holds36

ρ ρ ρ[ ] ≤ [ ] + [ ]∞ ∞W W E2HF HF DFT HF
x
HF HF

(18)

Thus, one can even think of approximating W∞
HF with W∞

β = 2

where

ρ ρ β ρ[ ] = [ ] + [ ]β
∞ ∞W W EHF PC HF

x
HF HF

(19)

Despite this reasoning, the accuracy of SPL interaction
energies changes very little when we approximate W∞

HF with
W∞

β [ρHF] and vary β from 0 to 2. We illustrate this in Figure
A1, which shows the MAE for the S66 dataset of the SPL
interpolation as a function of β when we set W∞

HF[ρHF] =
W∞

β [ρHF]. We can see from Figure A1 that the MAE changes
just slightly as β goes from 0 to 2, and the MAE at β = 2 is even
slightly higher than at β = 0. For this reason, we use the “bare”

PC model (i.e., W∞
β = 0[ρHF] as an approximation to W∞

HF[ρHF]
throughout this work).
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