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ABSTRACT
We study in detail the first three leading terms of the large coupling-strength limit of the adiabatic connection that has as weak-interaction
expansion the Møller–Plesset perturbation theory. We first focus on the H atom, both in the spin-polarized and the spin-unpolarized cases,
reporting numerical and analytical results. In particular, we derive an asymptotic equation that turns out to have simple analytical solutions
for certain channels. The asymptotic H atom solution for the spin-unpolarized case is then shown to be variationally optimal for the many-
electron spin-restricted closed-shell case, providing expressions for the large coupling-strength density functionals up to the third leading
order. We also analyze the H2 molecule and the uniform electron gas.

Published under license by AIP Publishing. https://doi.org/10.1063/5.0029084., s

I. INTRODUCTION

Mixing Density Functional Theory (DFT) and Hartree–Fock
(HF) ingredients is an approximation strategy that has a long
history in chemistry, already starting with hybrids1–7 and double
hybrids,8–11 but also by simply inserting the HF density into a given
approximate exchange–correlation (XC) density functional.12–18 In
these strategies, the underlying idea is to use HF ingredients to
approximate the XC energy of Kohn–Sham DFT.

The reverse strategy, namely to use density functionals to model
the HF correlation energy EHF

c (also called the traditional quantum
chemistry or wave function-theory correlation energy), is also a for-
mally valid alternative. The HF correlation energy EHF

c had been
proven19–21 a long time ago to be a unique functional of the HF den-
sity, EHF

c [ρHF
], and various semiempirical approximations for it were

already proposed and tested before these proofs (see, e.g., Refs. 22
and 23). It has also been found that the Wilson–Levy functional24

provides a decent generalized gradient approximation (GGA) of
EHF
c [ρHF

] for ionization energies25 and for non-covalent interaction
energies.26,27

More recently, it has been observed that rather accurate inter-
action energies,28,29 again especially for non-covalent complexes,30

can be obtained by modeling the HF correlation energy EHF
c with an

interpolation between the second-order Møller–Plesset perturbation
theory (MP2) and a large coupling-strength limit, which is approx-
imated with the strong-interaction DFT functionals31–33 of the HF
density. These interpolations can easily be corrected from their size-
consistency error30 and have been shown to also provide a diagnostic
indicator for the accuracy of MP2 for non-covalent interactions.34

Note that the Wilson–Levy24 functional was also constructed by gen-
eralizing Wigner’s original idea35 of interpolating between weak-
and strong-interactions. Thus, there seems to be an indication that
non-covalent interactions can be modeled in an accurate way by
using the interpolation idea to build EHF

c .
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To investigate the theoretical framework behind this idea, in
Ref. 36, the large coupling-strength limit of the adiabatic connec-
tion (AC) that has the Møller–Plesset (MP) series as the perturba-
tion expansion at small-coupling (denoted here as MP AC) has been
studied for the first time, proving that the leading term is determined
by a functional of the HF density with a clear electrostatic physical
interpretation and also establishing an inequality with respect to the
leading term of the density-fixed AC of DFT.

The aim of this work is to gain more insight into the large
coupling-strength limit of the MP AC, providing new pieces of
information to build better approximations. As a starting point, we
look at the simplest possible system, the H atom, which we con-
sider both in its spin-polarized and spin-unpolarized (which appears
locally, in the infinitely stretched H2 molecule) states. This allows
us to solve exactly the large coupling-strength asymptotic equation,
revealing the role of the HF exchange operator in this limit. We
then show that the spin-unpolarized H atom solution allows us to
write a variational estimate for the HF density functionals of the
next two leading terms for large coupling strength. We also ana-
lyze the H2 molecule in restricted HF (RHF) to study how it tends
to twice the spin-unpolarized H atom curve as the internuclear dis-
tance goes to infinity. Finally, we look at the uniform electron gas
(UEG), which provides the correct limit that the large coupling-
strength HF functionals should reach when the HF density is slowly
varying.

II. THEORETICAL BACKGROUND
We consider the MP AC, defined as the adiabatic connection

that has the MP series as the perturbation expansion at small cou-
pling strengths λ (see, e.g., Refs. 36 and 37), with the following λ-
dependent Hamiltonian (in Hartree atomic units, used throughout
this work):

ĤHF
λ = T̂ + V̂ext + Ĵ − K̂ + λ(V̂ee − Ĵ + K̂), (1)

with V̂ext as the (nuclear) external potential and Ĵ = Ĵ[ρHF
] and

K̂ = K̂[{ϕHF
i }] as the λ-independent Hartree and exchange opera-

tors (restricted or unrestricted) that are explicitly defined in terms of
the HF density ρHF and of the occupied HF orbitals {ϕHF

i }, obtained
from an initial standard HF calculation, i.e., by minimizing the λ = 1
Hamiltonian over single Slater determinants only. Note that with
our definition, K̂ is positive definite. Using the Hellman–Feynman
theorem on Eq. (1), one obtains

EHF
c = ∫

1

0
WHF

c,λ dλ, (2)

where WHF
c,λ is defined as

WHF
c,λ = ⟨Ψλ∣V̂ee − Ĵ + K̂∣Ψλ⟩ + U[ρHF

] + Ex[{ϕHF
i }], (3)

containing U[ρHF], which is the classical Hartree energy, Ex[{ϕHF
i }],

which is the usual HF exchange energy, and the wave function Ψλ
that minimizes the expectation value of ĤHF

λ of Eq. (1). This way, the
small λ expansion of WHF

c,λ returns the MP series,

WHF
c,λ→0 =

∞
∑
n=2

nEMPn
c λn−1. (4)

A. Summary of previous results for the λ→∞ limit
In Ref. 36, a simple variational argument has been used to show

that, when λ→∞, WHF
c,λ must have an expansion formally similar to

the one of the density-fixed adiabatic connection of DFT33,38 at least
for the first two terms,

WHF
c,λ→∞ =W

HF
c,∞ + λ−1/2 WHF

1
2

+ O(λ−
3
4 ). (5)

Note that in the density-fixed AC DFT case, it has been shown that33

the term after λ−1/2 must be at least O(λ−5/4), while one of the results
of this work will be to show that in the HF case, there can be a non-
zero term of order λ−3/4.

The way Eq. (5) has been proven36 was by noticing that in the
large λ limit, the term λ(V̂ee − Ĵ + K̂) in Eq. (1) becomes dominant,
and the wave function Ψλ ends up minimizing this term alone,

lim
λ→∞

Ψλ = arg min
Ψ
⟨Ψ∣V̂ee − Ĵ + K̂∣Ψ⟩. (6)

Moreover, since K̂ is a positive definite operator, the best we can do
is to make it vanish as λ→∞. This can be achieved with a very sim-
ple variational ansatz,36 in which the electrons are distinguishable,
and each one occupies a Gaussian centered in one of the positions
that minimize the multiplicative operator V̂ee − Ĵ,

V̂ee − Ĵ =
N

∑
i,j=1
j>i

1
∣ri − rj∣

−
N

∑
i=1

vh(ri, [ρ
HF
]), (7)

vh(r, [ρ]) = ∫
ρ(r′)
∣r − r′∣

dr′, (8)

seen as a function of r1, . . ., rN whose minimum is achieved in
rmin

1 , . . . , rmin
N ,

ΨT
λ (r1, . . . , rN) =

N

∏
i=1

Gα(λ)(ri − r
min
i ), (9)

where Gα(r) = α3/4

π3/4 e
− α

2 ∣r∣2 and α ∼ λ1/2 as λ → ∞. Since when
λ→∞, the square of the Gaussians Gα(λ) appearing in Eq. (9) tends
to Dirac δ-functions centered in different positions rmin

i , the effect of
antisymmetrization of Eq. (9) will be O(e−λ

1/2
) in the computation

of the expectation values, similar to the DFT case.39 As λ→∞, thus,
the expectation ⟨ΨT

λ ∣V̂ee − Ĵ∣ΨT
λ ⟩ tends to the absolute minimum of

the 3N-dimensional function V̂ee− Ĵ of Eq. (7), which will determine
the value of WHF

c,∞ in Eq. (5) once we add to it U + Ex. Since Ĵ only
depends on the HF density ρHF, the value of this minimum will be a
functional of the HF density only (although the HF orbitals are also
implicit functionals of the HF density,19–21 here the point is that they
do not appear at all in this leading term). We can also write the value
of WHF

c,∞ as

WHF
c,∞ = Eel[ρ

HF
] + Ex[{ϕHF

i }], (10)

where the density functional Eel[ρ] is the ground-state electrostatic
energy of N point charges in an attractive background of density
ρ(r), including the background–background repulsion,
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Eel[ρ] = min
{r1...rN}

⎧⎪⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎪⎩

N

∑
i,j=1
j>i

1
∣ri − rj∣

−
N

∑
i=1

vh(ri; [ρ]) + U[ρ]

⎫⎪⎪⎪⎪⎪
⎬
⎪⎪⎪⎪⎪⎭

. (11)

In other words, the λ→∞ limit of the MP adiabatic connection is a
crystal bound by the “positive” charge density ρHF(r).

The fact that α(λ) in Eq. (9) must grow as λ1/2 when λ→∞ has
been found variationally in Ref. 36, by writing α = a λn and minimiz-
ing the subleading term as λ→∞ with respect to n. In fact, by using
the following notations

⟨Ô⟩λ = ⟨Ψλ∣Ô∣Ψλ⟩ (12)

and

⟨Ô⟩λ→∞ = O∞ +
∞
∑
n=2

λ−
n
4 O n

4
, (13)

where Ô can be any operator independent of λ, we have that, with
the trial wave function of Eq. (9) and α(λ) = a λ1/2,

⟨K̂⟩λ→∞ = λ
−1/2K1/2 + O(λ−3/4

), (14)

which shows that it is possible to make the expectation of K̂ vanish at
large λ (although, of course, ΨT

λ will not provide in general the exact
value of K1/2). Since

WHF
c,λ =

dEHF
λ

dλ
+ U + Ex, (15)

with EHF
λ as the ground-state energy of Eq. (1), ⟨K̂⟩λ enters in the

large-λ expansion of WHF
c,λ at the same order as the kinetic energy

operator, whose expectation value diverges as λ1/2 for large λ (and
thus, its derivative vanishes as λ−1/2). Since the variational ansatz of
Eq. (9) provides the lowest possible expectation of V̂ee − Ĵ, it also
yields the exact WHF

c,∞ in Eq. (5).36 The next leading order, however,
is not exactly described by Eq. (9) (even if we refine the ansatz with
a normal modes analysis), and as we will illustrate with the case of
the H atom that is analytically soluble, WHF

1
2

has a different physics

than its DFT counterpart,33 with the wave function of Eq. (9) only
providing a reasonable upper bound for it.

III. THE H ATOM: SPIN-POLARIZED
AND UNPOLARIZED

In this section, we consider the hydrogen atom (N = 1), both
in the spin-polarized case (denoted here as H[1, 0]), for which HF
yields the exact ground-state energy and wave function (but not the
exact spectrum), and in the spin-unpolarized case, with 1/2 spin-
up and 1/2 spin-down electron (denoted as H[ 1

2 , 1
2 ]), which appears

locally in the stretched H2 molecule treated in restricted HF, and it
is often considered as a paradigmatic case for strong (static) corre-
lation.40–44 The two cases can be treated in a unified way by writing
the Hamiltonian of Eq. (1) as

ĤHF
λ = T̂ + V̂ext + (1 − λ)(Ĵ[ϕs] − sK̂[ϕs]), (16)

where s = 1 for H[1, 0] and s = 1/2 for H[ 1
2 , 1

2 ]. The operators Ĵ and K̂
are defined here in terms of the spatial HF orbital ϕs(r), with Ĵ being
the Hartree local multiplicative operator,

Ĵ = ∫ dr′
∣ϕs(r′)∣

2

∣r − r′∣
= vh(r) (17)

and the action of K̂ on a spatial wave function Ψ(r) given by

(K̂Ψ)(r) = ϕs(r)∫ dr′
ϕ∗s (r′)Ψ(r′)
∣r − r′∣

. (18)

These definitions in terms of spatial wave functions imply that for
the H[1, 0] case, we only search for minimizing wave functions Ψλ
that have the same spin as the one at λ = 0, i.e., we forbid spin flip as
λ increases from 0 to∞ (see Appendix A). For the H[ 1

2 , 1
2 ] case, the

spin of the wave function Ψλ does not matter.
The HF orbital ϕs(r) depends on s and solves the non-linear

problem at λ = 0,

ϕs(r) = arg min
ϕ
⟨ϕ∣T̂ + V̂ext + Ĵ[ϕ] − sK̂[ϕ]∣ϕ⟩. (19)

For s = 1, the minimizer of Eq. (19) will just be the hydrogen ground-
state wave function, with radial part ϕs=1 = 2e−r , since the expecta-
tion of Ĵ[ϕ] − K̂[ϕ] on ϕ is always zero, so that one ends up mini-
mizing T̂ + V̂ext alone. For s = 1

2 , the self-consistent HF solution (for
which here we have used a basis of 10 STOs) gives a more diffuse
orbital since 1

2 K̂ cannot fully remove the unphysical self-interaction
of Ĵ anymore, which pushes the electron further from the nucleus.
Note that the SCF procedure is only needed to obtain the HF orbital
(λ = 0), while finding the wave function and the energy for all λ > 0 is
a simple linear eigenvalue problem because Ĵ and K̂ are fixed by the
HF orbital ϕs.

Since ϕs is spherically symmetric, performing the usual partial-
wave expansion, the Hamiltonian (16) becomes block-diagonal in
each angular momentum channel l, each with energy

Eλ(l) = min
u
{

1
2 ∫

∞

0
dr u′(r)2

+ ∫
∞

0
dr u(r)2

(
l(l + 1)

2r2 −
Z
r

+ (1 − λ)vh(r))

−
2s

2l + 1
(1 − λ)∫

∞

0
dr r−lu(r)ϕs(r)∫

r

0
dr′ r′l+1ϕs(r′)u(r′)},

with

u(0) = 0, ∫

∞

0
u(r)2dr = 1, (20)

where u(r) = rψλ(r) and ψλ(r) is the radial wave function. In Eq. (20),
the radial HF orbital ϕs(r) is normalized as ∫∞0 r2ϕs(r)2dr = 1, and
we have used a general nuclear charge Z: while all the numerical
computations are done at Z = 1, the analytical derivation for the
large-λ asymptotics is carried out for a general Z.
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A. Computational details
We have computed Eλ(l) and the minimizing u(r) of Eq. (20)

for different channels l in two different ways because as λ increases,
the energies for l = 0 and l = 1 can become very close, even crossing
more than once in the s = 1 case, and we wanted to be sure that our
solver is accurate enough to capture this subtle feature.

The first method we have used is a simple variational minimiza-
tion using a Slater-type orbital (STO) basis set,

ψ(r) =
10

∑
n=1

cnrn−1e−anr , (21)

where we have also optimized the exponents an, although we have
observed that setting all an = 1 for λ between 0 and 30 does not sig-
nificantly change the energy. At λ ≳ 30, however, the wave function
needs to contract to localize the electron in the minimum of −vh(r),
and then, we need to optimize the an to obtain good energies.

The second method is the numerical solution on a grid of the
Euler–Lagrange equation corresponding to problem (20),

ϵλu(r) +
1
2
u′′(r) −

l(l + 1)
2r2 u(r)

= (
−Z
r

+ (1 − λ)vh(r))u(r) − s
(1 − λ)
2l + 1

ϕs(r)

× (r−l∫
r

0
dr′r′l+1ϕs(r′)u(r′) + rl+1

∫

∞

r
dr′r′−lϕs(r′)u(r′)),

(22)

for which we have used the spectral renormalization (SR)
method,45–47 which was originally developed in the field of non-
linear optics to find localized solitons. More recently, the SR method
has been applied to converge the self-consistent Kohn–Sham equa-
tions with the functionals from the λ→∞ limit of the density-fixed
DFT adiabatic connection.48 The SR variant we have used here starts
from an initial u(0) to compute, via Eq. (20), a first estimate of the
eigenvalue ϵ(0)λ . The next u(1) is computed from (22) by applying
the inverse of the operator on the left-hand side to the right-hand
side computed with u(0), and it is then normalized. The procedure
is then repeated until convergence is reached. A main advantage of
this method is that it does not depend on the initial guess and con-
verges to a fixed point after only a few iterations. Although it has not
been proven that the SR method always finds the global minimum
(only a fixed point), experience shows that it actually always finds
the ground state.45–47 Nonetheless, here we compare the SR results
to the variational basis-set expansion, and indeed, we find that the
SR method always converges to the lowest state, giving an energy
slightly better (lower) than the STO one.

B. Numerical results: EHF
λ and WHF

c,λ

1. The spin-polarized case (s = 1)
The H[1, 0] (s = 1) system is trivial for 0 ≤ λ ≤ 1 (as in the DFT

AC for all λ ≥ 0): since Ĵ[ϕ] − K̂[ϕ] is a positive definite operator,
as long as (1 − λ) ≥ 0 in Eq. (16), the best we can do is to make it
vanish, which is achieved if Ψλ = ϕs. Thus, as long as λ ≤ 1, the Ψλ
that minimizes the Hamiltonian of Eq. (16) will be the hydrogenic
ground state. As soon as λ > 1, however, the situation changes since

it starts to be variationally convenient to make the expectation of
Ĵ[ϕ] − K̂[ϕ] different from zero. Interestingly, this happens at a λ
quite larger than 1, λ ≈ 2.3 (λ = 2.3144 with the STO expansion and
λ = 2.3142 with the SR method), with the ground state switching to
the l = 1 channel, as shown in Fig. 1. Around λ ≈ 11.6 (λ = 11.68 with
the STO expansion and λ = 11.55 with the SR method), there is a
second crossing of states, in which the l = 0 channel becomes again
the lowest. The other l channels give energies much higher at all
λ ≥ 0.

The l = 0 channel remains the lowest for all λ ≳ 11.6: in
Sec. III D 2, we will also provide the analytic solution for Ψλ→∞,
which provides the exact WHF

c,λ up to (and including) orders λ−3/4.
In Fig. 2, we also report the corresponding WHF

c,λ , which obvi-
ously has jumps at the λ values when we have a crossing of states.
These crossings of states are expected to occur more often in the MP
AC than in the density-fixed DFT AC, as in the latter the density
constraint enforces many symmetries. This clearly makes it more

FIG. 1. The lowest energy curves for H[1, 0] (s = 1) computed with the STO expan-
sion and the spectral renormalization (SR) method (upper panel). As λ increases
beyond 1, there are two crossings of states: first from the H atom ground state
(Eλ = − 1

2 , l = 0) to l = 1 at λ ≈ 2.3 (enlarged in the second panel) and then back
to an l = 0 channel at λ ≈ 11.6 (enlarged in the third panel).
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FIG. 2. WHF
c,λ for H[1, 0] (s = 1) computed with the STO expansion and the spectral

renormalization method (SR) between λ = 0 and λ = 20. The two jumps appear at
the two crossings of states of Fig. 1.

difficult to build interpolations, which would somehow be an aver-
age over the discontinuities. We should also remark that the H[1, 0]
case is particularly pathological for the MP AC (see also the discus-
sion in Sec. VII) and should not be considered as very representative
for the general case.

2. The spin-unpolarized case (s = 1/2)
In the H[ 1

2 , 1
2 ] case, the l = 0 channel turns out to be always

the lowest in energy, as shown in Fig. 3. The absence of crossing of
states means that WHF

c,λ , reported in Fig. 4, is now a smooth func-
tion of λ. We can also see that WHF

c,λ has a peculiar shape, changing
from a concave to a convex curve, which is expected to be a gen-
eral feature of the MP adiabatic connection integrand. In fact, MP2
typically yields correlation energies that are too small in absolute
value (i.e., too high), implying that at λ = 0, the tangent to WHF

c,λ lies
above the curve. For example, in Refs. 34 and 49, WHF

c,λ for the He
isoelectronic series and for the H2 molecule has been computed for
λ between 0 and 1, where it has been found to be concave in this λ
range. However, since it has been proven36 that when λ → ∞WHF

c,λ

FIG. 3. The lowest energy curves for H[ 1
2 , 1

2 ] (s = 1
2 ) computed with the STO

expansion and the spectral renormalization (SR) method for both the l = 0 and
l = 1 channels.

FIG. 4. WHF
c,λ for H[ 1

2 , 1
2 ] (s = 1

2 ) computed with the STO expansion and the
spectral renormalization (SR) method between λ = 0 and λ = 20.

tends to a finite value, at some finite λ, the curve needs to become
convex.

Note that WHF
c,λ=0 is not zero but equal to − 1

2U. This is because
the H[ 1

2 , 1
2 ] system we are considering is a subsystem, namely, a H

atom inside an infinitely stretched H2 molecule treated in restricted
HF. If we consider the whole system (the molecule), as we will do in
Sec. IV, then WHF

c,λ=0 = 0, and as the internuclear distance R becomes
very large, the slope of WHF

c,λ at λ = 0 (MP2) tends to −∞. In the
R → ∞ limit, the adiabatic connection curve for the H2 molecule
“jumps” to twice the curve of Fig. 4, as shown in Fig. 10.

C. Numerical results: The minimizing wave functions
1. The spin-polarized case (s = 1)

As said, for the s = 1 system, the minimizing wave function is
just the hydrogenic 1s orbital for 0 ≤ λ ≲ 2.3, switching to a radial
l = 1 wave function at λ ≈ 2.3, which develops a radial node asso-
ciated with a single oscillation with a small amplitude. This oscilla-
tion might be present already at the crossing of states but for very
large r and with a very small amplitude and becomes more evi-
dent as λ increases. At the second crossing (λ ≈ 11.6), when the
lowest energy state becomes again l = 0, we have a function that
also has a radial node, as shown in Fig. 5. This single radial node
remains present as λ increases, also in the limit λ → ∞, which can
be computed analytically and will be presented and discussed in
Sec. III D.

2. The spin-unpolarized case (s = 1/2)
In the s = 1

2 system, the ground-state wave function switches
from a nodeless function for 0 ≤ λ ≤ 1 to one with a radial node,
apparently as soon as λ > 1. In fact, we observe a node already at
λ = 1.1, as shown in Fig. 6, where we see that the node appears first
at large r and then moves inward (toward smaller r) as λ increases. In
addition, the single oscillation associated with the node starts with a
very tiny amplitude as soon as λ > 1 and increases in amplitude as λ
grows. When λ → ∞, we will see that the wave function contracts,
keeping one node, although for the s = 1

2 case, we could not find an
analytic solution for large λ. The presence of the node at large λ for
both s = 1 and s = 1

2 will be explained in Sec. III D.
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FIG. 5. The radial wave functions ψλ(r) = u(r)/r, where u(r) minimizes Eq. (20)
for H[1, 0] (s = 1) in the l-channel with the lowest energy, which is l = 0 for
0 ≤ λ ≲ 2.3, then l = 1 for 2.3 ≲ λ ≲ 11.6, and again l = 0 for larger λ, computed
with the spectral renormalization (SR) method.

D. The large-λ limit
1. Scaling and large-λ expansion

In this derivation, we try to be as general as possible and keep
track of l, s, and the nuclear charge Z, starting from the Euler–
Lagrange equation (22) for u(r) = rψλ(r), where ψλ(r) is the radial
part of Ψλ(r). As shown in Ref. 36, when λ →∞, we end up mini-
mizing the expectation of a classical potential energy given by V̂ee− Ĵ.

In this case, with N = 1 electrons, we need to minimize the expecta-
tion of −vh(r) alone. The square of the wave function will then tend
asymptotically to a Dirac delta function centered in the minimum of
−vh(r), which is at the nucleus. At the next leading order, we might
expect, as in DFT,33 zero-point oscillations around this minimum,
although, as we will see, the presence of the operator K̂ will alter the
wave function at orders λ1/2, introducing a node. Nonetheless, the
scaling at large λ remains the same36 as in the DFT case (at least in
3D), with the relevant scaled coordinate being33

t = λ
1
4 r. (23)

When we rewrite Eq. (22) in terms of t, we will have that, as λ→∞,
both ϕs(λ−

1
4 t) and vh(λ−

1
4 t) can be expanded around the origin,

ϕs(λ−
1
4 t) = ϕs(0) + ϕ′s(0)λ

− 1
4 t +⋯

= ϕs(0)(1 − Zλ−
1
4 t) +⋯, (24)

where we have used the cusp condition, ϕ′s(0) = −Zϕs(0), in the last
equation. Similarly, for vh, we have

vh(λ
− 1

4 t) = vh(0) −
1
6
ϕs(0)2λ−

1
2 t2 +

Z
6
ϕs(0)2λ−

3
4 t3 +⋯. (25)

Inserting these expansions in Eq. (22), we can collect different orders
for large λ,

−λ vh(0)u(t) + λ
1
2 [−

1
2
u′′(t) +

l(l + 1)
2t2 u(t) +

1
6
ϕs(0)2t2u(t) +

sϕs(0)2

2l + 1
(t−l ∫

t

0
dt′t′l+1u(t′) + tl+1

∫

∞

t
dt′t′−lu(t′))]

− Zλ
1
4 [

u(t)
t

+
1
6
ϕs(0)2t3u(t) +

sϕs(0)2

2l + 1
(t1−l

∫

t

0
dt′t′l+1u(t′) + tl+2

∫

∞

t
dt′t′−lu(t′) + t−l ∫

t

0
dt′t′l+2u(t′)

+ tl+1
∫

∞

t
dt′t′1−lu(t′))] + O(λ0

) = (λ ϵ∞ + λ
1
2 ϵ 1

2
+ λ

1
4 ϵ 1

4
+ O(λ0

))u(t), (26)

where we have also carried out the same large-λ expansion for the
eigenvalue ϵλ, and we have improperly used the same symbol u(t) for
the function u(λ−1/4t). We then immediately see that, as predicted,
the leading term is not affected by K̂ and it is given by the minimum
of −vh(r), which is at the nucleus,

ϵ∞ = −vh(0). (27)

Since this leading term is independent of l, it is the order λ1/2 that
determines which l channel will be the lowest in the large λ limit.

2. The order λ1/2

From Eq. (26), we can directly read the pseudo-eigenvalue
equation for the order λ1/2, which, by defining

p =
√
ϕs(0) t = λ

1
4
√
ϕs(0) r, ϵ̃ 1

2
=

ϵ 1
2

ϕs(0)
, (28)

can be further simplified into

−
1
2
u′′1

2
(p) +

l(l + 1)
2p2 u 1

2
(p) +

1
6
p2u 1

2
(p)

+
s

2l + 1
(p−l ∫

p

0
dq ql+1u 1

2
(q) + pl+1

∫

∞

p
dq q−lu 1

2
(q))

= ϵ̃ 1
2
u 1

2
(p), (29)

which depends only on s and l. This equation turns out to have sim-
ple analytical solutions for certain pairs of s and l, one of them being
s = 1, l = 0. The other analytical solutions seem to be all for s > 1 (e.g.,
s = 5/3, l = 1), which are not relevant for our problem. The simple
analytical solutions are finite linear combinations of the 3D isotropic
harmonic oscillator (IHO) eigenfunctions for the problem with
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FIG. 6. The radial wave functions ψλ(r) = u(r)/r, where u(r) minimizes Eq. (20) with l = 0, for H[ 1
2 , 1

2 ] (s = 1
2 ), computed with the spectral renormalization (SR) method. The

appearance of the radial node as soon as λ > 1 is illustrated in the second panel.

s = 0 in Eq. (29),

u 1
2
(p) = p∑

n
cnξn(p),

ξn(p) = N exp(−
p2

2
√

3
)plL

l+ 1
2

n (
p2

√
3
),

N =

¿
Á
Á
Á
ÁÀ

√
1

4π
√

33 (2n+2l+3n!), ( 1
2
√

3
)
l

(2n + 2l + 1)!!

(30)

where L
l+ 1

2
n are the generalized Laguerre polynomials and the eigen-

values for the IHO are (2n+ l+ 3
2)ω, with ω = 1/

√
3 in our case and

n = 0, 1, 2, . . ..
For s = 1, l = 0, the analytic solution for ψHF

λ→∞(p) = u 1
2
(p)/p is

ψHF
λ→∞(p) =

4e−
p2

2
√

3 (9 −
√

3p2
)

315/8√5 4
√
π

,

ϵ̃ 1
2
=

7
2
√

3
≈ 2.020 73 (s = 1, l = 0),

(31)

which is a linear combination of the ground state and the first excited
state of the 3D IHO. In Fig. 7, we compare Eq. (31) to the scaled
wave function at larger λ obtained from the SR solution of the full
λ-dependent equation (22), finding perfect agreement for λ = 106.

We thus see that the radial node observed at large but finite
λ persists in the λ → ∞ limit, and it is due to the operator K̂,
which makes the asymptotic wave function different than the sim-
ple IHO ground state of the variational ansatz of Eq. (9). In the
s = 1 case, K̂ simply mixes in the first IHO excited state. The rea-
son why K̂ must introduce a radial node in the l = 0 channel can
be understood by looking at Eq. (29), in which the term due to K̂
reads

s(∫
p

0
dq qu 1

2
(q) + p∫

∞

p
dqu 1

2
(q)). (32)

This term must vanish when p → ∞ for a localized solution. This
happens automatically for the second term of Eq. (32), but not for
the first one. Thus, any localized solution of Eq. (29) must satisfy the
additional constraint

∫

∞

0
dq qu 1

2
(q) = 0, (33)

which requires at least one radial node. The radial node also appears
in the other cases (l > 0 and the s = 1

2 system) for exactly the same
reason.

For s = 1/2 or for s = 1 and l > 0, we can still use the IHO wave
functions as a finite basis approximation for u 1

2
, observing a reason-

ably fast convergence for the energy. In Table I, we show the results
for ϵ̃ 1

2
for both s = 1 and s = 1

2 in the l = 0 and l = 1 channels. We see
that the l = 0 channel remains the lowest as λ→∞ in both cases. The
asymptotic wave function for s = 1

2 has a shape similar to the one for
s = 1, as shown in Fig. 8, where it has been computed with 21 IHO
basis functions.

FIG. 7. The analytical solution for s = 1, l = 0 for the order λ1/2, given exactly
by two IHO states [Eq. (31)] compared to the spectral renormalization (SR) wave
function for the full λ-dependent equation (22) at various λ in the scaled coordinate
p = λ

1
4
√
ϕs(0) r.
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TABLE I. The value of ϵ̃ 1
2

for the s = 1 and s = 1
2 systems for both the l = 0 and l = 1

channels using the 3D isotropic harmonic oscillator (IHO) basis set and the spectral
renormalization (SR) method to solve Eq. (29). For s = 1, l = 0, two IHO states solve
Eq. (29) exactly; see Eq. (31). For the other cases, we have used 11 IHO states,
except for s = 1

2 , l = 0 for which we have used 21 IHO states.

l = 0 l = 1

s = 1 IHO 2.0207 2.2357
SR 2.0210 2.2362

s = 1
2

IHO 1.6185 1.9005
SR 1.6192 1.9007

We can compare this exact (or very accurate) asymptotic solu-
tions for s = 1 and s = 1

2 with the variational ansatz of Eq. (9): we
see that the exact (or accurate) wave functions have the same func-
tional form of Eq. (9), with a localized function of the scaled variable
t = λ1/4 r centered at the minimum of −vh(r), whose square tends to
a Dirac δ function when λ→∞. The leading term of order λ is then
the same in both cases, as predicted. (This value does not depend
on the particular representation we choose for the δ function, which
could be, for example, any finite linear combination of IHO wave
functions). The next leading term of order λ1/2, however, selects the
precise representation of the δ function, which is different than the
simple IHO ground-state used in Eq. (9), mixing in the excited states.
The ground-state IHO of Eq. (9), with the ω optimized variationally,
gives an upper bound for ϵ̃ 1

2
, equal to 1

2

√
3 (1 + 8s), corresponding

to 2.5981 for s = 1 (compared to the exact value of 2.0207) and 1.9365
for s = 1

2 (compared to the accurate value of 1.6185).

3. The order λ 1
4

If we subtract from both sides of Eq. (26) the constant lead-
ing term of order λ and divide everything by λ1/2, we obtain for the
operators on the left-hand side a perturbation expansion of the kind
Ĥ 1

2
+ λ−1/4 Ĥ 1

4
+ O(λ−1/2

), which implies that ϵ 1
4

is exactly given by

the first-order perturbation term ⟨u 1
2
∣Ĥ 1

4
∣u 1

2
⟩, i.e., ϵ 1

4
= Z
√
ϕs(0) ϵ̃ 1

4
,

with

FIG. 8. The solution u 1
2
(p)/p of Eq. (29) for s = 1

2 obtained with 21 IHO states,

compared to the solution for the s = 1 case.

ϵ̃ 1
4
= −{∫

∞

0
dp(

1
p

+
p3

6
)u 1

2
(p)2 + 2s [∫

∞

0
dp pu 1

2
(p)

×∫

p

0
dq qu 1

2
(q) + ∫

∞

0
dpu 1

2
(p)∫

p

0
dq q2 u 1

2
(q)]}, (34)

where we have directly considered l = 0 only since we are interested
in the ground-state energy. We then find

ϵ̃ 1
4
= −

112
15 × 31/4√π

≈ −3.2009 (s = 1), (35)

ϵ̃ 1
4
= −2.703 06 (s = 1

2), (36)

where the s = 1
2 value has been obtained with 21 IHO basis functions

(with the SR method, we get −2.699 93).

4. The large-λ expansion of WHF
c,λ

Putting everything together, with the radial HF orbital
ϕs(r) =

√
4πρHF(r), we find that WHF

c,λ for the H atom at large λ
has the expansion

FIG. 9. The large λ expansion of Eq. (37) for H[1, 0] (s = 1) and H[ 1
2 , 1

2 ] (s = 1
2 ) compared to the spectral renormalization (SR) results for problem (22).
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WHF
c,λ→∞ =W

HF
c,∞ +

WHF
1
2
√
λ

+
WHF

3
4

λ
3
4

+⋯, (37)

WHF
c,∞ = −vh(0) + (1 − s)U, (38)

WHF
1
2
= ϵ̃ 1

2

√
4π
2

√
ρHF(0), (39)

WHF
3
4
= Z ϵ̃ 1

4

4
√

4π
4

4
√
ρHF(0). (40)

The presence of the order λ−3/4 is interesting because this term is
zero in the large λ-expansion of the DFT adiabatic connection.33

We see that, here, this order is non-zero because the position rmin

is at the nucleus, which makes (i) the external potential expec-
tation value diverge as λ1/4 and (ii) the third-order expansion of
−vh(r) and the first-order expansion of the HF orbital around rmin,

which would normally have zero expectation on a spherically sym-
metric function around rmin, be non-zero because of the cusp.
In Sec. V, we generalize Eqs. (37)–(40) to the closed-shell many-
electron case, for which we can still expect that, in most cases, for
each atom, one of the rmin

i is at the nucleus (with exceptions, of
course). In the uniform electron gas case, analyzed in Sec. VI, this
term is zero as the nuclear charge is “smeared” into a continuum
background.

In Fig. 9, we compare the expansion of Eqs. (37)–(40) for s = 1
and s = 1

2 with our numerical data from the SR solution of the
full λ-dependent problem (22), finding very good agreement for
large λ.

IV. THE H2 MOLECULE (RHF)
The MP adiabatic connection for the H2 molecule has been

already computed by Pernal49 for 0 ≤ λ ≤ 1 and for R = 1.4 and
3.0. Here, we extend the calculations up to λ = 20 and for other

FIG. 10. The λ-dependent adiabatic connection integrand of the H2 molecule at different internuclear distances R compared to twice our W c ,λ for H[ 1
2 , 1

2 ] of Fig. 4, labeled
here as “R→∞.”

FIG. 11. The λ-dependent adiabatic connection integrand for the HF case [Eq. (1)] and for the density-fixed DFT case51,52 for the H2 molecule at internuclear distance R = 5
and R = 10.
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stretched geometries up to R = 300. The computational details are
the same as in the supplementary material of Ref. 34, where we have
used full configuration interaction (FCI) with an uncontracted aug-
cc-pVTZ basis set to solve the λ-dependent Hamiltonian of Eq. (1)
for the restricted HF case.

In Fig. 10, we compare our results for the H2 molecule with
twice the WHF

c,λ for the H[ 1
2 , 1

2 ] system of Fig. 4. In the upper panel,
we first focus on λ ∈ [0, 1], where we see that as R gets larger, the
H2 WHF

c,λ eventually falls on our H[ 1
2 , 1

2 ] curve, although this happens
only in the extreme stretched case, with R around 50 or more. In the
lower panel, we extend the λ-range up to 20, where we see that the
WHF

c,λ for R = 5 and R = 10 approach the H[ 1
2 , 1

2 ] curve, but at larger
λ and from below.

This behavior is very different from the one of the density-fixed
DFT adiabatic connection, in which the λ → ∞ limit (in this case,
coinciding exactly with the R→∞ limit44,50) is reached much faster
as the molecule is stretched, as shown in Fig. 11 for the R = 5 and
R = 10 case.

V. FROM THE H ATOM TO THE MANY-ELECTRON
CLOSED-SHELL CASE

In this section, we show that the result for the H atom for
s = 1

2 provides a variational expression for the large-λ expansion
of the MP AC in the general spin-restricted closed-shell case. The
idea is to start from a variational ansatz more general than the one
of Eq. (9), namely,

Ψh
λ(r1, . . . , rN) =

N

∏
i=1

Li,λ(∣ri − r
min
i ∣), (41)

where

Li,λ(r) = λ
3n
2 Li(λn r), (42)

Li(t) is a localized, normalized, 3D spherical function,

∫ dtL2
i (t) = 1, (43)

which needs to be determined variationally. We will set at the end
n = 1/4 in Eq. (42), which is the correct scaling for the 3D case, as
shown in Ref. 36. We then evaluate the expectation of the Hamilto-
nian ĤHF

λ of Eq. (1) on Ψh
λ for a closed-shell system for large λ, where

we start at λ = 0 from a spin-restricted HF calculation (and for this
reason, the choice of the spins is irrelevant in Eq. (41); see also the
discussion in Appendix A). The kinetic energy is simply given by

⟨Ψh
λ ∣T̂∣Ψ

h
λ⟩ =

λ2n

2

N

∑
i=1
∫ dt∣∇Li(t)∣2. (44)

Since when λ is large, Ψh
λ localizes the electrons in the minimum

of the 3N-dimensional function V̂ee − Ĵ, we can expand it around its
minimum and express it in scaled coordinates ti = λn(ri − rmin

i ),

V̂ee − Ĵ = C +
λ−2n

2

N

∑
i,j=1
∑
α,β

ti,αHiα,jβ tj,β + O(λ−3n
), (45)

where α, β = x, y, z, H is the Hessian matrix with respect to ri of
the 3N-dimensional function V̂ee − Ĵ evaluated in rmin

1 , . . . , rmin
N , and

C = Eel[ρHF] − U[ρHF] is the value of its minimum, which enters in
WHF

c,∞ and does not determine either n or Li. We thus subtract C
and look at the term of order λ−2n, whose expectation on Ψh

λ gives
non-zero contribution only for the diagonal terms of H because Li
is spherically symmetric. Thus, we obtain, neglecting orders λ−3n,

⟨Ψh
λ ∣V̂ee − Ĵ∣Ψh

λ⟩ − C =
λ−2n

2

N

∑
i=1
∑
α
Hiα,iα ∫ dt t2

α L2
i (t)

= λ−2n
N

∑
i=1

4π ρHF
(rmin

i )∫ dt
t2

6
L2
i (t), (46)

where we have used ∫dt t2
α L2

i (t) = 1
3 ∫dt t

2 L2
i (t) and

∑
α
Hiα,iα = ∇

2
i (V̂ee − Ĵ)∣rmin

i
= 4πρHF

(rmin
i ). (47)

The expectation of K̂ in the RHF closed-shell case is, up to
orders λ−3n,

⟨Ψh
λ ∣K̂∣Ψ

h
λ⟩ =

N

∑
i=1
∫ dri ∫ dr′i

Li,λ(∣ri − rmin
i ∣)Li,λ(∣r′i − rmin

i ∣)

∣ri − r′i ∣

×

N/2
∑
a=1

ϕ∗a (r
′
i)ϕa(ri)

= λ−2n
N

∑
i=1
∫ dt∫ dt′

Li(t)Li(t′)
∣t − t′∣

N/2
∑
a=1
∣ϕa(rmin

i )∣
2

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
=ρHF(rmin

i )/2

= λ−2n
N

∑
i=1

ρHF
(rmin

i )

2 ∫ dt∫ dt′
Li(t)Li(t′)
∣t − t′∣

, (48)

where we have expanded the HF orbitals ϕa in scaled coordinates at
large λ,

ϕa(λ−nti + rmin
i ) = ϕa(r

min
i ) + λ−nti ⋅ ∇ϕa(rmin

i ) + O(λ−2n
). (49)

When we insert Eqs. (44), (46), and (48) in the expectation of ĤHF
λ

of Eq. (1) and set n = 1/4, we obtain, neglecting orders λ1/4,

⟨Ψh
λ ∣Ĥ

HF
λ ∣Ψ

h
λ⟩ − λC = λ

1/2 N

∑
i=1

Ẽ 1
2
(ρHF
(rmin

i ))[Li], (50)

where

Ẽ 1
2
(ρ)[L] = 1

2 ∫
dt∣∇L(t)∣2 + 4π ρ ∫ dt

t2

6
L2
(t)

+
ρ
2 ∫

dt∫ dt′
L(t)L(t′)
∣t − t′∣

. (51)

Varying Ẽ 1
2
(ρ)[L] with respect to L (keeping the normalization

constraint), switching to the function u(t) =
√

4π tL(t), and intro-
ducing the scaled variable p = (4π ρ)1/4t, we obtain exactly Eq. (29)
with s = 1/2. This means that the best possible spherical variational
ansatz for Li is the same as the one we found for the H atom, around
each equilibrium position rmin

i ,
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Lopt
i (t) =

u 1
2
( 4
√

4π ρHF(rmin
i ) t)

√
4π 4
√

4π ρHF(rmin
i ) t

, (52)

where u 1
2
(p)/p is the function shown in Fig. 8 for s = 1/2. We

can thus write the following general variational estimate for the
functional W 1

2
[ρHF
]:

W 1
2
[ρHF
] = ϵ̃ 1

2

√
4π
2

N

∑
i=1
(ρHF
(rmin

i ))
1/2

= 2.8687
N

∑
i=1
(ρHF
(rmin

i ))
1/2

, (53)

where we have used ϵ̃ 1
2
= 1.6185 from Table I.

At the next leading order, neither V̂ee − Ĵ nor K̂ contributes
because their expansion at large λ contains only odd powers of ti ,α.
This is due to the fact that we only use spherical functions around
rmin
i , so we cannot probe anisotropy with our variational ansatz. The

only exception is for the rmin
i that coincide with a nuclear position,

where there is a cusp in the HF density and orbitals. In this case,
exactly as in the H atom, the external potential, V̂ee − Ĵ, and K̂ all
contribute to the same order λ1/4 in the energy. We thus obtain also
an estimate for the functional W 3

4
[ρHF
],

W 3
4
[ρHF
] = ϵ̃ 1

4

4
√

4π
4 ∑

rZk

Zk (ρ
HF
(rZk))

1/4

= −1.272∑
rZk

Zk(ρ
HF
(rZk))

1/4
, (54)

where the sum runs only over the rmin
i that are located at a nucleus

with charge Zk, and we have used the value ϵ̃ 1
4
= −2.703 from

Eq. (36).

VI. UNIFORM ELECTRON GAS
In this section, we focus on the uniform electron gas (UEG),53,54

which is a cornerstone in the construction of approximate density
functionals, and can thus provide useful pieces of information for
building models for the large-λ limit of the MP AC. The UEG is
sometimes also called jellium, although, in principle, the two models
are defined differently:55 in the UEG, there is no external poten-
tial, but the electrons are constrained to have a uniform density ρ,
while in the jellium model, the external potential is fixed, determined
by a background of uniform positive charge density ρ. However,
very recently, the equivalence between the two models has been
fully established, including for the strong-coupling (low-density)
regime.56,57 The jellium Hamiltonian reads

Ĥjel = −
1
2

N

∑
i=1
∇

2
ri +

1
2

N

∑
i≠j

1
∣ri − rj∣

−
N

∑
i=1
∫
V

ρ
∣ri − r′∣

dr′

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
V̂eb=−Ĵ[ρ]

+
1
2 ∫V×V

ρ2

∣r − r′∣
dr′dr

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
V̂bb=U[ρ]

, (55)

where we have N electrons immersed in the background of positive
charge density ρ inside the volume V, and we are interested in the
thermodynamic limit N, V →∞ with ρ = N/V kept fixed, which can
be done in different equivalent ways.57 The relevant length scale in
Ĥjel is rs, defined for D = 3 as rs = 3

√
3/(4πρ): if we use scaled coor-

dinates si = ri/rs, we see that the kinetic energy scales as 1/r2
s , while

all the potential energy terms scale as 1/rs. The low-density regime
rs → ∞ is thus equivalent to the large-λ case and the electrons are
believed to localize in lattice points to form a bcc Wigner crys-
tal.35,53 In the case of the UEG, the uniform density is recovered
by making a linear superposition of all orientations and elementary
translations of the lattice,57,58 which is a special case of the strictly
correlated-electron (SCE) limit32 of DFT.

The accurate large-rs treatment, carried out by Carr,58 leads to
the expansion for the energy per electron

ϵjel(rs) ∼ −
0.896
rs

+
1.33

r3/2
s

+ O(
1
r2
s
), rs →∞. (56)

The coefficient of the leading term is the Madelung constant of the
bcc lattice, and it is obtained by minimizing the electrostatic energy
alone. The subleading term is obtained from a normal-mode analysis
of zero-point oscillations of the electrons around their equilibrium
positions. Note that if instead of the normal mode calculation we use
a single spherical Gaussian as in the trial wave function of Eq. (9),
we obtain Wigner’s original result35 for the coefficient of r−3/2

s , equal
to 1.5, making an error of about 12% with respect to the accurate
value of 1.33. This could provide an indication of the kind of error
we make when considering a spherical uncoupled approximation as
we do with the trial wave function of Eq. (41).

We thus consider the large-λ limit of the MP adiabatic con-
nection of Eq. (1). The unrestricted HF ground-state of the UEG
is never translationally invariant, even at high density, as there is
always an exponentially small gain in energy with a charge- and
spin-density wave.59–62 Here, we consider a fully restricted HF cal-
culation, in which the translational invariance is enforced. In this
simple case, the electronic HF density is uniform, ρHF = ρ, and
the occupied HF orbitals are plane waves with momentum k, with
|k| ≤ kf and kf ∶= 3

√
π 9/4 r−1

s . By comparing Eq. (55) with Eq. (11),
we see immediately that the leading term in Eq. (56) is exactly equal
to Eel[ρ]/N in the thermodynamic limit,

lim
N,V→∞
N/V=ρ

Eel[ρ]
N
= −

0.896
rs

, ρ = (
4π
3
r3
s )
−1

. (57)

In other words, the unknown part Eel[ρHF] in the strong interact-
ing limit of the restricted MP adiabatic connection for a UEG with
ρ = ρHF is given by the leading term of the low-density expansion of
the UEG. In Ref. 36, it has been proven that for any density ρ(r),

Eel[ρ] ≤W
DFT
∞ [ρ], (58)

where WDFT
∞ [ρ] is the λ → ∞ limit of the DFT density-fixed adi-

abatic connection,32,33 which for the UEG corresponds to the bcc
Madelung energy.57,63 We thus see that for the case of a uniform
density, we have the equality
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Eel[ρunif] =W
DFT
∞ [ρunif]. (59)

The exact WDFT
∞ [ρ] for a general non-uniform density ρ(r) is

involved and described by the SCE formalism.32,64 It is also very
well approximated by the PC model,31 which is a gradient expan-
sion (GEA). From Eqs. (58) and (59), we see that in order to build a
GEA for Eel[ρ], we will most likely need a gradient correction that is
negative rather than positive as in the PC model. This route will be
pursued in future work.

By using the variational result of Eq. (53), we can obtain
the adiabatic connection integrand per electron wHF

c,λ of the RHF
Hamiltonian for the UEG at large λ as

wHF
c,λ = −

1.354
rs

+
1
√
λ

1.402

r3/2
s

+⋯ (λ→∞), (60)

where the coefficient of the 1/rs term is obtained by adding
ϵx = −3/4(3/2π)2/3r−1

s to the Madelung energy, to comply with
Eq. (3). We can also see how the coefficient of the term r−3/2

s is raised
by the operator K̂: if we stay in a spherical approximation, without K̂,
we would obtain Wigner’s result equal to 3/4 = 0.75 instead of 1.402.
In Appendix B, we also report a calculation with a single Gaussian
including K̂, which further illustrates the MP AC for the UEG case.

VII. LARGE COUPLING STRENGTH AND STRONG
INTERACTION

In our previous work,36 the large-λ limit of the MP adiabatic
connection defined by Eq. (1) was referred to as strong-interaction
limit, in analogy with the density-fixed DFT adiabatic connection.
However, the λ → ∞ limit results for the H atom mentioned in
Sec. III B 1 clash with the term strong-interaction as this is a case
in which there is no interaction at all in the exact Hamiltonian. This
counterintuitive result is due to the fact that in Hamiltonian (1), it is
not the full interaction operator V̂ee that is scaled with λ but the fluc-
tuation potential V̂ee − Ĵ + K̂. In other words, what grows with λ is
the difference between the exact electron–electron interaction oper-
ator and its HF approximation. For a spin-polarized one-electron
system, this has weird consequences, which simply come from the
fact that in the HF approximation, the ground-state is exact, but the
excited states are not. On the other hand, we have seen in Sec. VI
that in the case of the uniform electron gas, the λ → ∞ limit of
the MP AC tends to the Wigner crystal state, for which the term
strong-interaction would work well. Overall, we have decided to use
the term large coupling strength that seems to better describe both
cases.

VIII. CONCLUSIONS AND PERSPECTIVES
We have studied the adiabatic connection of Eq. (1) (the MP

AC) from λ = 0 to λ → ∞ for the H atom, both in the spin-
polarized and spin-unpolarized cases (Sec. III). The results have
revealed several interesting features of the MP AC, including an
asymptotic equation for the large-λ limit that is generally valid
in a spherical approximation (as proven in Sec. V). For a many-
electron closed-shell system, we can thus write the following large-λ

expansion:

WHF
c,λ→∞ =W

HF
c,∞ +

WHF
1
2
√
λ

+
WHF

3
4

λ
3
4

+⋯, (61)

WHF
c,∞ = Eel[ρ

HF
] + Ex, (62)

WHF
1
2
≈ 2.8687

N

∑
i=1
(ρHF
(rmin

i ))
1/2

, (63)

WHF
3
4
≈ −1.272∑

rZk

Zk(ρ
HF
(rZk))

1/4
, (64)

where Eel[ρ] is the electrostatic energy defined in Eq. (11), which,
in turn, determines the minimizing positions {rmin

1 , . . . , rmin
N }. In

Eq. (64), the sum runs only over minimizing positions that are
located at a nucleus with charge Zk. Equation (62) is exact, while
Eqs. (63) and (64) are variational estimates. We have also studied the
H2 molecule case (Sec. IV) and the uniform electron gas (Sec. VI).

This study opens several future perspectives such as follows:

● The design and testing of improved interpolation formulas
between the MP2 limit and the large coupling-strength limit
to treat non-covalent interactions.

● The design of GGA’s for the functionals of Eqs. (62)–(64), in
a spirit similar to the PC model.31 By studying the uniform
electron gas, we have established here the starting point in
the limit of uniform density.

● The generalization of this study to other kinds of adiabatic
connection appearing in wave function theory.49

ACKNOWLEDGMENTS
Financial support from the Netherlands Organisation for Sci-

entific Research under Vici Grant No. 724.017.001, the European
Research Council under H2020/ERC Consolidator Grant corr-DFT
(Grant No. 648932), and H2020/MSCA-IF “SCP-Disorder” (Grant
No. 797247) is acknowledged. S.V. acknowledges funding from the
Rubicon project (Grant No. 019.181EN.026), which is financed by
the Netherlands Organisation for Scientific Research (NWO).

APPENDIX A: SPIN–FLIP IN THE H ATOM
If we allow the spin of the wave function Ψλ in Sec. III to be

determined variationally, for the H[1, 0] case, we will get a complete
spin flip as soon as λ > 1. In fact, the kernel of K̂ reads explicitly (with
x = r, σ, where σ is the spin of the electron) as

K̂(x, x′) =
ϕs(r)ϕ∗s (r′)
∣r − r′∣

∣α⟩⟨α′∣. (A1)

As long as λ < 1, the lowest energy solution is attained by choos-
ing the spin of Ψλ to be α, but as soon as λ > 1, the expectation of
(λ − 1)K̂ becomes positive definite, and it is thus variationally con-
venient to flip the spin of Ψλ from α to β to make it zero. In that case,
the λ-dependent problem for λ > 1 becomes much simpler (and less
interesting) than the one treated in Sec. III as there is only (1 − λ)
vh(r) in the λ-dependent Hamiltonian.
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For the H[ 1
2 , 1

2 ], the spin of Ψλ does not matter because the spin
part of the kernel of K̂ is simply 1

2(∣α⟩⟨α
′
∣ + ∣β⟩⟨β′∣), which always

has expectation 1
2 . This factor is taken into account by writing s in

front of K̂ in Eq. (16). The same holds for any closed-shell system in
restricted HF, which is the case treated in Sec. V.

APPENDIX B: EXPLICIT CALCULATION WITH ΨT
λ

FOR THE UEG
We report the explicit calculation with the simpler trial wave

function of Eq. (9) for the UEG HF λ-dependent Hamiltonian, which
we write for large λ as

ĤHF
λ→∞,jel = T̂ + λ(V̂ee − Ĵ[ρ] + U[ρ] + K̂), (B1)

where we have discarded terms of order λ0 and we have included
the background–background term to keep the energy per electron
finite in the thermodynamic limit. The background–background will
provide the term U[ρ] that is anyway inside Eel[ρ]; see Eq. (11). Since
in D = 3 the kinetic energy and the exchange operator K̂ enter to the
same order

√
λ in the asymptotic expansion of the energy of ĤHF

λ,jel,
we expect

min
Ψ
⟨Ψ∣ĤHF

λ,jel∣Ψ⟩

N
+ λ

0.896
rs
∼
√
λ
aHF

ZP

r3/2
s

, (B2)

and we aim at variationally computing aHF
ZP using the wave function

of Eq. (9), which we rewrite for ease of reading as

ΨT
λ (r1, . . . , rN) =

N

∏
i=1

Gωλ(ri − r
min
i ),

Gωλ(r) = (
ωλ
π
)

3
4
e−

ωλ
2 (∣r∣)2

,

(B3)

where the rmin
i are the positions of the direct bcc lattice points.

For the expectation value of the first terms of Hamiltonian (B1)
on ΨT

λ , we have the standard results

⟨ΨT
λ ∣T̂∣Ψ

T
λ ⟩ = N

3
4
ωλ, (B4)

⟨ΨT
λ ∣V̂ee∣ΨT

λ ⟩ =
1
2

N

∑
i≠j

erf(
√ωλ

2 ∣r
min
i − rmin

j ∣)

∣rmin
i − rmin

j ∣

=
N
2 ∑

rmin
i ≠0

erf(
√ωλ

2 ∣r
min
i ∣)

∣rmin
i ∣

, (B5)

⟨ΨT
λ ∣ − Ĵ[ρ]∣Ψ

T
λ ⟩ = −ρ

N

∑
i=1
∫
V
dr

erf(
√
ωλ∣r − rmin

i ∣)

∣r − rmin
i ∣

. (B6)

It is then convenient to rewrite all the erf functions as 1 − erfc to
remove the Madelung energy, which does not depend on ωλ. This
way, we obtain for the electrostatic part only converging integrals
that lead to the original result of Wigner,35

⟨ΨT
λ ∣V̂ee − Ĵ[ρ] + U[ρ]∣ΨT

λ ⟩

N
+

0.896
rs
= ρ

π
ωλ

+ O(e−ωλ). (B7)

To evaluate the expectation of K̂, we have to express it in terms
of the HF orbitals ϕHF

j = 1√
V
eikjr, which yield the uniform ρ via

ρHF
= ρ = ∑N/2

j=1 ∣ϕ
HF
j ∣

2,

⟨ΨT
λ ∣K̂∣Ψ

T
λ ⟩ =

1
V

N

∑
i=1
(
ωλ
π
)

3
2

∑
∣k∣<kf
∫
V

dr

× ∫
V

dr′
e−

ωλ
2 (∣r−rmin

i ∣)2
e−

ωλ
2 (∣r′−rmin

i ∣)2
eik⋅(r−r

′)

∣r − r′∣

= N
2(kf −

√
ωλFD(

kf√ωλ
))

π
, (B8)

where FD(x) denotes Dawson’s integral.65 This expectation value can
be expanded for large ωλ,

⟨ΨT
λ ∣K̂∣Ψ

T
λ ⟩ = N ρ

4π
ωλ

+ O(
1
ω2
λ
). (B9)

Putting all the terms together, the total energy per electron

ϵHF
λ =

⟨Ψλ ∣ĤHF
λ,jel ∣Ψλ⟩
N to leading orders in ωλ reads

ϵHF
λ + λ

0.896
rs
=

3
4
ωλ + λ ρ

5π
ωλ

, (B10)

which is minimized at ωλ =
√
λ

r3/2
s

√
5 ≈
√
λ 2.24
r3/2
s

, yielding

ϵHF
λ + λ

0.896
rs
=

√
λ

r3/2
s

3
2
√

5 ≈
√
λ

3.354

r3/2
s

. (B11)

This gives for the adiabatic connection integrand per electron a term
λ−1/2 r−3/2

s with a coefficient 3.354/2 = 1.677, which is, as it should,
higher than the one found in Eq. (60) from Eq. (53), which was equal
to 1.402.
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