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ABSTRACT: Electronic structure calculations are ubiquitous in most branches of chemistry,
but all have errors in both energies and equilibrium geometries. Quantifying errors in possibly
dozens of bond angles and bond lengths is a Herculean task. A single natural measure of
geometric error is introduced, the geometry energy offset (GEO). GEO links many disparate
aspects of geometry errors: a new ranking of different methods, quantitative insight into errors in
specific geometric parameters, and insight into trends with different methods. GEO can also
reduce the cost of high-level geometry optimizations and shows when geometric errors distort
the overall error of a method. Results, including some surprises, are given for both covalent and
weak interactions.

Whenever one runs an electronic structure calculation
within the Born−Oppenheimer approximation,

whether it is a density functional calculation, ab initio, or
semiempirical, of a molecule or a material, one must always
answer the question: Which geometry should I use? Whatever
the limitations of your method are, they will show up in giving
an approximate energy at any given geometry which will
minimize at some approximate geometry. Sometimes the
differences between the exact geometry and the approximation
are so slight that it does not matter. Whenever it does matter,
common sense often dictates a choice: When comparing
different methods, the requirement of apples-to-apples
comparison means comparing several methods with a fixed
geometry.1−3 Other times, when the cost of a single calculation
is severe, geometry optimization is prohibitively expensive, and
one resorts to using geometries from a cheaper method.
This problem is compounded when comparing geometric

parameters computed with different methods. As a molecule
grows in size, there are 3N − 6 distinct degrees of freedom for
the equilibrium structure, with errors in bond lengths, angles,
etc. Some are more accurate in one method, some are better in
another (see, e.g., ref 4). Should one average over all such
parameters? But what if one method is better for bond lengths,
and another for angles? And how do such errors in geometry
correlate with other energetic errors?
We define the geometry energy offset (GEO) of a given

method as

E E EG G( ) ( )geo 0= ̃ − (1)

where E(G) is the exact ground-state energy at geometry G, G0
is the exact geometry, and G̃ is an approximate geometry. We
define the theoretically exact geometry as the exact minimum
of the exact ground-state potential energy surface. For main-

group chemistry molecules and approximations that we
consider here, CCSD(T)/CBS provides sufficiently accurate
reference both in terms of ground-state energies and
geometries.5−11 The simple definition of eq 1 leads to all the
analysis and results contained in the paper. Figure 1
summarizes some of our most important results with GEO,
with more details within this paper and the Supporting
Information. On the left, we plot GEO energies averaged over
a data set of small organic molecules (top). Here we use
CCSD(T)/A′V5Z12 as a reference, given its high accuracy for
geometries of main-group molecules.12 Accurate calculation of
GEO using CCSD(T) is expensive (see Computational
Details), but using the approximations themselves is less
expensive and yields nearly identical results (Egeo′ ). We can see
that different approximations perform characteristically well or
poorly. Thus, every method can be ranked by its GEO value,
and some perform much better for geometries than they do
for, e.g., atomization energies. This is crucial information for
understanding the accuracy of different methods for geo-
metries. Directly below, we evaluate a much greater variety of
methods for a data set of medium-sized organic molecules.
Here, we use B2PLYP as a proxy reference, since it is the
winner in the top panel and CCSD(T) is already too
expensive. Thus, strictly speaking, this panel measures closest
to B2PLYP geometries, which approximates GEO well for all
but the best four methods (see Figure S3, where we analyze in
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more detail the accuracy of B2PLYP as a GEO reference). This
shows some surprises: lower level (and less costly) methods
can outperform higher level methods because they have been
trained empirically. For example, the semiempirical GFN1-xTB
method of Grimme and co-workers competes with DFT with
the PBE functional13 and outperforms DFT with BLYP.14,15

In the center, we show the very disparate behavior of two
popular representative density functionals for single bonds and
for double bonds. PBE, as a generalized gradient approx-
imation (GGA) is far more accurate for double bonds than for
singles. But a (global) hybrid, B3LYP, totally reverses this
trend: more accurate for single bonds, but surprisingly far less
accurate for double bonds. Explanations of the accuracy of
hybrids16,17 typically center on atomization energies, not bond
lengths, and do not explain these trends. The top right panel
shows a trade-off between angle- and bond-length errors for
water. There are clear behaviors of different levels of density
functionals. The local density approximation has noticeable
errors in both the bond length and angle (but far smaller than
those of HF). One can clearly see how GGAs like PBE and
BLYP and the meta-GGA TPSS18 greatly reduce the angular
error, but have almost no effect on the bond length. Finally, by
mixing some fraction (about 1/4) of exact exchange, PBE0 and
B3LYP lie along a line joining their parent GGA to HF (see
Figure S16 for more details on how the position of the
approximation in the GEO contour plot depends on the exact
exchange fraction). Furthermore, the mixing fraction of exact
exchange almost perfectly cancels the bond-length error, while
increasing the angle-error. Better functionals have about the
same accuracy, while MP2 has almost perfect geometry.
All these results and trends are for strong covalent bonds.

But GEO is even more important for weak interactions, where
GEO energies can be comparable to the binding energy itself.
To illustrate this, in the right, we contrast contours of GEO for
two A2B molecules, one covalently bonded and the other a
noncovalent interaction: Water and the van der Waals trimer,

Ne2Ar, with the different methods from the left figures plotted
as points in the plane. The noncovalent case is strikingly
different. First, its binding energy is only 0.37 kcal/mol, so
GEO errors are now more than relevant on this scale. This is
accompanied by huge errors in bond length, related to the
softness of the potential. Finally, the performance of different
electronic structure methods is very different from the covalent
case. For covalent bonds, MP2 is exceptionally good; for NCIs,
density functional approximations are much better. These
effects seem to have largely been ignored when ranking
functionals for such complexes, which is usually done at a fixed
geometry.1−3 We expect improved performance for weak
interaction methods once GEO errors are accounted for.
The rest of this paper explains how GEO works and shows

how useful it can be. We focus on just three immediate
applications: (i) obtaining insight into geometric errors in
molecular benchmark energy sets; (ii) establishing an energetic
scale comparing the quality of geometries from different
approximate quantum-mechanical (QM) solvers; (iii) how this
scale can be used for choosing a geometry optimization solver
that has a good accuracy to cost ratio. By truncating Egeo to
second order, we define Egeo

harm and Egeo
simple (see below), which we

use to gain insight into how errors in different structural
parameters translate to Egeo contributions. We apply our logic
first to covalent bonds, where GEO is typically negligible
relative to atomization energies, and then to noncovalent
bonds, where GEO is often comparable to binding energies,
and so is even more important.
Performance of Approximations. One of the most valuable

uses of GEO is to rank different electronic structure methods
for their geometric accuracy, as illustrated in the upper left
panel of Figure 1. We stress that this ranking is quite different
from traditional rankings by purely energetic performance,
such as for atomization energies (AE). Roughly, GEO is
typically about 1/80-th of the mean absolute error in AE (see
Figure S2, where we show the correlation plot between GEO

Figure 1. Why GEO is useful. Left: exact and approximate GEO rankings for quantum chemical methods on small molecules (top) and GEO of
many different methods over medium-sized organic molecules (bottom) with B2PLYP as a proxy reference. For the lists of molecules and further
details, see Figures S2−S7 and Tables S1−S3. Center: Egeo for a few methods and a few molecules (top) and single- and double-bond contributions
to Egeo

simple for two popular methods, showing a huge difference in their accuracies (bottom). For the list of molecules, see Figure 3. Right: GEO
contours as a function of errors in the bond angle and length for the water molecule (top panel) and weakly bonded Ne2Ar (lower panel) and
positions of different approximations.
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and MAE for AE). Relative to their poor performance for AE,
LDA, and HF are surprisingly good for geometries, because
their MAE for atomization is so poor. Nonempirical func-
tionals (PBE, TPSS) are close to this line, so improvements in
AEs are reflected in improvements in GEO. Empirical
functionals typically perform very well, especially the global
hybrid B3LYP, and BLYP, as a GGA, yields surprisingly poor
geometries. Also, the addition of D3 corrections19 to any
functional makes little difference to its geometric performance
for covalent bonds.
If we want to calculate GEO errors for larger main-group

molecules, for which CCSD(T) is too expensive, we can use
B2PLYP as a reference in place of CCSD(T). Multireference
systems, such as transition metal dimers, are more delicate and
would need a better reference than CCSD(T)20,21 to calculate
GEO.
The bigger picture is shown in the lower-left panel of Figure

1, which includes many different kinds of methods. Here, we
had to use B2PLYP22 as a reference (see above). Besides the
QM solvers considered in Figure 1a(top), we also include
semiempirical QM solvers, such as DFTB23,24 and PMx,25,26

and the highly practical HF-3c27 and PBEh-3c,28 both of which
use a small basis set and contain empirical parameters. The
results are summarized in the lower panel of Figure 1a, where
different error bar colors indicate methods at different levels of
theory, with the best method for each level of theory shown in
red. Trends are similar to the panel above, but overall GEOs
are larger as the molecules are bigger. This plot is not accurate
below about 0.1 kcal/mol, because of the B2PLYP reference.
Thus, B3LYP does not really rank as No. 1, its errors are
simply correlated with the reference. As we discuss later, since
GFN1-xTB24 has the best performance among all semi-
empirical methods shown, it can serve as an excellent starting
point in optimization schemes.

Geometry Optimization. On the basis of GEO, one can
establish the following sequence composed of the best method
for each level of complexity: GFN1-xTB → TPSS (or PBEh-
3c) → B3LYP → B2PLYP. This sequence can be used in
automated explorations of chemical space and molecular
screenings assisted by QM solvers,29−31 which are powerful
tools for the discovery of new molecules with desired
properties. In these procedures, on the basis of energetic
criteria (e.g., their binding energies with a specific enzyme),
molecules are filtered out, and QM geometry optimizations of
a large number of molecules make the procedure computa-
tionally demanding. As the number of molecules in the
screening decreases, more expensive and more accurate
methods are typically used. Thus, on the basis of our sequence
determined by the GEO criterion, in the first step of the
screening one can employ GFN1-xTB for optimizing geo-
metries of all initial molecular candidates. After the first cycle
of filtering out molecules, TPSS18 can be employed as an
optimizer, and so on. In the last round, B2PLYP geometries
can be confidently used, given they are energetically very close
to the CCSD(T) geometries (∼0.03 kcal/mol for the testset
considered in Figure 1a). Even if one only wants the CCSD(T)
geometries for small molecules, one can use the same sequence
to preoptimize the molecular geometry, before the CCSD(T)
optimizer is turned on, and thereby save computational time.
Simplif ications and Analysis Tools. As mentioned above, a

much less costly calculation is

E E EG G( ) ( )geo 0′ = ̃ ̃ − ̃ (2)

where Ẽ is the approximate energy (see Supplementary Section
1 for more mathematical details). At minima, the signs of Egeo
and Egeo′ are definite: Egeo′ ≤ 0 and Egeo ≥ 0. From Figure 1a,
the mean |Egeo′ | is in excellent agreement with its Egeo

Figure 2. GEO analysis for formaldehyde. Top: (a) GEO rankings of approximations. The plots also show that Egeo is accurately approximated by
Egeo
harm (eq 3) and Egeo

simple (eq 5). (b) Egeo
simple weights, Egeo

simple,i/Egeo
simple (see lower panels for color legends). When all bonds are stretched by the same γ

factor, GEO becomes Egeo
γ (see the text), and the underlying weights are shown in the first bar and labeled by “K”. (c) GEO-active and GEO-

inactive modes (those that have no contribution to the right-hand side of eq 4). For the Egeo
harm weights in normal modes, analogous to panel b, see

Figure S32. (d)−(f) Plots showing errors in individual geometric parameters (x-axis) and how these errors translate to Egeo
simple terms by virtue of eq

5 (y-axis). The points marked by the arrows, show GEO when the bond lengths are stretched by 1%.
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counterpart for all approximations (see also Tables S1 and S2
comparing Egeo and Egeo′ values for individual molecules).
The next step is to approximate GEO by expanding E0

around its minimum to second order:

E G H
1
2

Ggeo
harm T

0= Δ ̃ Δ ̃
(3)

where H0 is the Hessian at the minimum, composed of force
constants and ΔG̃ = G̃ − G0 is the error in specific geometric
parameters (degrees of freedom) that determine the relative
positions of nuclei. These could be simple Cartesians or any
other choice of coordinates. Again, this is extremely accurate
when approximated with most electronic structure methods
(see Figures S20−S25). Thus, we can use eq 3 for further
analysis and decomposition of GEO. One can easily
diagonalize H0 and obtain GEO modes, p. In these
coordinates, eq 3 becomes

E f p
1
2

( )
i

N

i
p

igeo
harm

1

2
g

∑= Δ
= (4)

where f i
p are the underlying force constants (H0 eigenvalues)

and Δpi = p̃i − pi represent ΔG̃ written in terms of the errors in
the GEO normal modes (H0 eigenvectors) and Ng ≤ 3N − 6 is
the number of GEO-active modes. A highly appealing feature
of eq 4 is that at the minimum each term contributes positively
to Egeo

harm which, in turn, allows us to obtain weights of each
modes’ contribution to the total GEO (see Figures S31−S33,
where for a set of small molecules we show the weights of
different GEO-active modes). GEO-inactive modes are those
that do not contribute to the total Egeo

harm. For example, by
symmetry, no (sensible) electronic structure approximation
gives unequal OH bond lengths in the water molecule, so the
asymmetric stretch of the OH bond is GEO-inactive (see
Figure S29). The higher the symmetry of a molecule, the fewer
modes are GEO-active. For ethene, all modes that distort its
D2h symmetry (asymmetric and out-of-plane vibrations) are
GEO-inactive, so only 3 of its 12 modes are GEO-active (see
Figure S33).
Besides the GEO modes, a more chemically intuitive analysis

in terms of bond lengths, angles, and torsion angles of Egeo can
be obtained by considering eq 3 in internal coordinates.
Considering only the underlying diagonal elements of H0

q (the
Hessian in internal coordinates), we find the following simple
approximation to Egeo

harm:

E E f q
1
2

( )
i

N

i i
q

igeo
harm

geo
simple

1

3 6

,
2∑≈ = Δ

=

−

(5)

where Δqi = q̃i − q are the errors in internal coordinates. While
the right-hand side of eq 4 is exactly equal to Egeo

harm, this is not
so for Egeo

simple, since the off-diagonal H0
q are typically small but

nonzero. For the organic molecules we consider here, Egeo
simple is

typically in good agreement with both Egeo
harm and the “exact”

Egeo (see Figures S20−S25). This, in turn, allows us to safely
use eq 5 to decompose Egeo

harm into its positive contributions
arising from errors in specific geometric parameters.
In Figure 2, we illustrate how a GEO analysis works for a

simple case, formaldehyde. In panel a, we give GEO rankings
of different approximations for this molecule, which somewhat
align with the database averages of Figure 1a. As with all
covalent cases we studied, Egeo

harm and Egeo
simple are in excellent

agreement with GEO, which allows us to use eq 5 to

decompose contributions from different structural parameters.
The fractional contributions of each coordinate are shown in
panel b. Angle errors give only a minor contribution to GEO
for all methods. For the hybrids, the GEO error comes nearly
entirely from the error in the double bond, while in the case of
semilocal functionals, nearly the entire GEO error comes from
the error in the single-bond lengths, consistent with the trends
in Figure 1b. The rankings for the single- and double-bond
lengths and the bond angle are shown in the lower panels and
how they correlate with Egeo

simple. Our GEO axes are logarithmic,
but the actual curves are parabolic. The rankings differ
substantially from those for the total GEO. The leftmost is the
double bond, and here the semilocal functionals (no mixing of
exact exchange) do best, outperforming even B2PLYP! The
hybrids do no better than simple LDA. But, the roles are
reversed in the middle panel, showing that hybrids greatly
improve single-bond length error. Finally, the angle-error is
shown, with a variety of results, but no clear trends. For the set
of molecules considered in Figure 1b, MP2 and B2PLYP yield
the best angles on average (see the right panel of Figure S13).
All three curves in the lower panels of Figure 2 are monotonic,
so rankings by a Egeo

simple contribution correspond directly to
rankings by the error in the underlying geometric parameter.
Finally, in Figure 2c, we make a distinction between the GEO-
active and -inactive modes of formaldehyde.
Absolute GEO Scale. A problem that bedevils benchmarking

of atomization energies is whether to consider total atom-
ization energy errors or errors per bond. Here we show that
there exists a universal GEO scale, independent of any method,
that overcomes this problem for geometric errors. Consider a
small expansion of all coordinates, ΔG = γG0, producing Egeo

γ =
γ2D/2, where D = G0

TH0G0. Thus, Egeo
γ is the GEO value for a

very specific geometric error, that of expansion (or
compression) of the exact geometry. For our small molecules,
if γ = 1%, Egeo

γ is a fraction of a kcal/mol. Thus, any calculation
of GEO by any method for any molecule can be compared to
this intrinsic property of the molecule. Moreover, Egeo

γ scales
with the size of the molecule (compare, e.g., D values for small
molecules shown in Table S6 with those for medium-sized
molecules shown in Table S7), so that GEOs measured relative
to it do not grow with molecular size. We can even decompose
Egeo
γ in terms of Hessian eigenvectors or simple internal

coordinates, giving an internally defined distribution of
contributions. This only includes bond lengths, as no angle
changes when molecules are uniformly expanded.
To compare GEO values on the D scale across different

molecules, we define Egeo
D = Egeo(DH2O/D), which contains D

for the molecule in its denominator, ensuring it does not grow
with molecular size, and DH2O in its numerator to normalize it.
In Figure 3, we repeat the plot in the top panel of Figure 1b,
but with Egeo

D , which varies much less with molecular size. For
the same set of molecules, we report the underlying D values in
Table 1, where we also show that approximate calculations of
D typically yield highly accurate estimates (even HF is not too
bad). In Figure S34, we show the decomposition of D for each
bond in each molecule, with double bonds being about 0.25
and most singles being about 0.1 if to an H atom, and about
0.16 if between heavier atoms. The units here are 104 kcal/mol.
For rare gas dimers (bonded by weak interactions), D values
are several orders of magnitude smaller (see Table S8).
Returning to Figure 2, the leftmost column of (b) is the D

decomposition of the single versus double bond, showing that
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under expansion, 60% of the energy cost is to stretch the
double bond, 40% to stretch the single. Then BLYP clearly
makes an unusually small error in the double, and a relatively
large error in the single.
Noncovalent Interactions. The rest of this paper is devoted to

weak interactions. We re-examine all aspects of GEO for these
cases, as GEO energies can be a more significant fraction of the
binding energies here. Force constants for weak bonds are so
much weaker that even very small GEO values can lead to large
errors in bond lengths. For weak interactions, we include D3
corrections19 to the DFT approximations, which typically
greatly improve energetic accuracy. We also only allow the
weak bond length to vary in complexes, i.e., one degree of
freedom.
The upper panel of Figure 4 shows a prototypical van der

Waals system, Ne2, with the exact curve and various
approximations. In most cases, the geometries are quite
accurate (minima are marked by beads) so that GEO energies
are very small. The ωB97X-D functional34 has a large
geometric error, which is significantly reduced by the new
functionals built upon it (see Figure S41).35−37 Nevertheless,

ωB97X-D is interesting here because of its highly accurate
energy minimum, resulting from a cancellation of geometric
and nongeometric errors. Since functionals are applied to cases
where neither accurate geometries nor energies are known, the
primary concern is to predict an accurate energy at the
approximate minimum. By this criterion, ωB97X-D is the most
accurate approximation shown in the lower panel of Figure 4!
Note that the D3 correction worsens PBE here. Furthermore,
B2PLYP gives an excellent geometry.
The approximate Egeo′ works well when the geometry is

reasonably good, and the harmonic approximation is largely
still valid (dashed line in the lower panel of Figure 4) but is less
accurate than for typical covalent cases. Decomposition into
Hessian eigenvectors is irrelevant here, as for now we only
adjust one geometry parameter, the length of the weak bond.
The analysis is thus the same as for a simple diatomic, where
the Cartesian coordinate difference is the internal coordinate.
Typically, databases are established using a fixed reference

geometry, which may or may not be very close to the exact
minimum (as measured by GEO). Optimization of parameters
in an approximation will then miss the trade-off between
geometry and energy that can occur in applications beyond the
training database, where presumably a geometry-optimized
calculation should be designed to yield the best energy.
Implications for Benchmarking Molecular Energies. In quantum

chemistry, the performance of approximate QM solvers is
usually assessed by single-point calculations at reference
geometries.1−3,38 Now we show the importance of GEO in
such comparisons using the S66×8 data set.

Figure 3. Same plot as in the top panel of Figure 1b but with Egeo
D (see

the absolute GEO scale section) on the y-axis. For more plots
comparing Egeo and Egeo

D , see Figure S8.

Table 1. Accurate D Values [CCSD(T)] in 104 kcal/mol,
and Approximate Values from Selected Methods, for the Set
of Molecules Considered in Figure 1ba

molecule CCSD(T) B2PLYP B3LYP PBE HF

1 0.221 0.220 0.219 0.211 0.247
2 0.220 0.221 0.215 0.209 0.239
3 0.566 0.567 0.563 0.545 0.629
4 0.989 0.998 0.990 0.966 1.076
5 0.452 0.452 0.443 0.435 0.488
6 0.463 0.463 0.458 0.443 0.511
7 0.727 0.736 0.733 0.714 0.810
8 0.634 0.643 0.642 0.623 0.699
9 0.848 0.856 0.856 0.823 0.971
10 0.735 0.744 0.744 0.719 0.828
11 0.555 0.564 0.569 0.547 0.636
12 0.485 0.489 0.497 0.476 0.563
13 0.725 0.723 0.731 0.697 0.842
14 0.594 0.592 0.599 0.573 0.696
MAE 0.005 0.007 0.017 0.073
(%) 0.7 1.3 3.1 12.2

aIn the last row, we report the mean absolute percentage errors of
approximations. For the list of molecules, see Figure 3. Tables S5−S8
report D values for other molecules or other approximations
considered in this work.

Figure 4. GEO analysis for the Ne2 binding energies. Top panel:
binding curves of Ne2 with various methods. Lower panel: GEO for
different approximations. For more details, see Figures S40−S44.
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In Figure 5, we show plots comparing GEO with the total
|ΔE| errors of MP2 (with a complete basis set) and the PBE0

hybrid with the D3 correction for the S66 binding energies
(other methods are in SI in Figures S45−S47). Vertical and
horizontal dashed lines represent the averaged GEO and |ΔE|,
respectively, separated into H-bonds, dispersion dominated
interactions, and others. Both methods have overall mean
average energy errors of about 0.5 kcal/mol, but MP2 is worst
for dispersion complexes, while PBE0-D3 is worst for H-bonds.

But clearly, MP2 yields much worse geometries with GEO
values about 4 times larger. Also, for MP2, there is a strong
correlation between GEO and errors in binding energies. But
for PBE0-D3, GEO errors do not correlate with such errors.
For the geometry of weak bonded complexes, PBE0-D3 is
clearly superior to MP2, but not (overall) for binding energies.
Here we employ the S66 data set, but the same methodology
can be applied to other noncovalent data sets of interest.39,40

Finally, we consider the effect of varying geometries on
binding energy errors in Table 2. Each column is a method for
finding a geometry, each row is the method used for finding
the energy, all averaged over the 66 complexes. The bolded
entries along the diagonal are the errors of each method at its
own geometry. The last column is the errors on accurate
geometries, given by CCSD(T), i.e., the best estimate of the
exact geometry here. The numbers are very similar in all cases,
suggesting that improvements in geometry do not matter.
However, this makes the B2PLYP column even more
surprising: For all methods, the errors are smaller at the
B2PLYP geometries than at their own geometries, sometimes
by almost a factor of 2, and always better than on the accurate
geometries! How can this be? We explored and found that
most approximations overbind the S66 complexes (particularly
those bonded by dispersion), and B2PLYP typically over-
estimates the bond lengths. For this reason, energies of
approximate methods at the B2PLYP minimum are more
accurate than at their own minimum (see the benzene−uracil
binding curves shown in Figure S48.)
Here we have covered only the most obvious topics that the

GEO concept brings into focus. For main group chemistry and
weak interactions, GEO calculations and analysis yield an ideal
tool for understanding geometric errors and for ranking
different approximations, one that is very different from tables
of errors in atomization/binding energies and could easily be
applied to transition state geometries. An advantage of the
GEO concept is that it uses energetic units to assess qualities of
approximate geometries, and thus it can be easily coupled with
the standard energetic scores1−3 used to rank different
approximations. Specifically, the GEO scores can be included
in the calculation of the weighted total mean absolute deviation
(WTMAD)1 that will pertain to new benchmark databases.
Here we analyze errors in geometries obtained from electronic
structure methods, but the very same tools are also applicable
to molecular mechanics methods. Here we study GEO at fixed
basis sets, but in future work, we will also study how the GEO

Figure 5. EX[GX] − E0[G0] vs GEO errors for the binding energies of
the S66 complexes of MP2/CBS (top panel), PBE0-D3 (lower panel).
The complexes are classified into “H-bonds”, “Dispersion”, and
“Others” as in the original S66 publication.32 Colored dashed lines
represent MAEs for different S66 categories, and the gray dash line
represents the overall S66 MAEs.

Table 2. MAE of Different Methods at Different Minima of S66×8 Binding Curves for the S66 Dataseta

MP2/CBS B2PLYP B3LYP-D3 PBE0-D3 PBE-D3 MN15 ωB97X-D PBE CCSD(T)

MP2/CBS 0.51 0.26 0.45 0.43 0.38 0.47 0.46 0.28 0.47
B2PLYP 1.63 1.34 1.45 1.43 1.38 1.52 1.51 1.40 1.46
B3LYP-D3 0.44 0.34 0.43 0.42 0.41 0.41 0.42 0.53 0.43
PBE0-D3 0.51 0.43 0.48 0.49 0.48 0.45 0.47 0.54 0.48
PBE-D3 0.48 0.40 0.44 0.45 0.46 0.40 0.41 0.44 0.44
MN15 0.56 0.34 0.59 0.58 0.53 0.60 0.60 0.34 0.59
ωB97X-D 0.42 0.25 0.47 0.45 0.41 0.47 0.48 0.38 0.46
PBE 2.29 1.77 2.04 1.98 1.90 2.14 2.12 1.71 2.06

aThe error is defined as EX[GY] − E0[G0], where X is a method in rows and Y is the method in columns, and E0[G0] is the binding energy at the
CCSD(T) minimum. The S66×8 binding curves from CCSD(T)/CBS (used as a reference here) and MP2/CBS have been taken from the original
S66×8 dataset.32,33 All other binding curves have been obtained from counterpoise corrected calculations within the aug-cc-pVTZ basis set. The
minimum of each binding curve has been found numerically after the interpolation of 8 data points for each of the S66 complex (see details above).
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varies across different basis set and different approximations
(as hinted in Figure S17).

■ COMPUTATIONAL DETAILS

Now we go back to the top panel of Figure 1a, where we
calculate mean GEO for a data set of 14 small organic
molecules, which is the AV5Z subset of the W4-11-GEOM set
produced by Karton and co-workers.12 The geometries from
this data set have been optimized at the CCSD(T) level, which
is the level of theory that we use for this data set as a reference.
GEOs for approximate methods that we consider here are
obtained as follows. The Ẽ(G0) quantity is obtained from the
total energies of each of the approximate method at CCSD(T)
geometries. Then we relax CCSD(T) geometries by using each
of the approximate methods, and this allows us to calculate the
Ẽ(G̃) term. Finally, we obtain the total energies of each of the
approximate method at CCSD(T) geometries to compute
E0(G̃) . These energies are obtained from single-point
CCSD(T)/A′V5Z calculations on the G̃ geometries. In this
way, we ensure that the level of theory used for the reference
single-point energy calculations matches the level of theory
used for obtaining reference geometries by Karton and
others.12,41 Other GEOs in the paper are computed in the
same manner and in the Supporting Information we provide
further computational details.
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The Supporting Information is available free of charge at
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