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ABSTRACT: Empirical fitting of parameters in approximate density functionals is common.
Such fits conflate errors in the self-consistent density with errors in the energy functional, but
density-corrected DFT (DC-DFT) separates these two. We illustrate with catastrophic failures
of a toy functional applied to H2

+ at varying bond lengths, where the standard fitting procedure
misses the exact functional; Grimme’s D3 fit to noncovalent interactions, which can be
contaminated by large density errors such as in the WATER27 and B30 data sets; and double-
hybrids trained on self-consistent densities, which can perform poorly on systems with density-
driven errors. In these cases, more accurate results are found at no additional cost by using
Hartree−Fock (HF) densities instead of self-consistent densities. For binding energies of small
water clusters, errors are greatly reduced. Range-separated hybrids with 100% HF at large
distances suffer much less from this effect.

Density functional theory has become a standard tool for
computing electronic structure in chemistry. Early

functionals, such as the local density approximation, were
derived from physical intuition.1,2 For the last quarter century,
fitting of empirical parameters in approximate exchange−
correlation functionals has been popular. The early successes of
Becke88 exchange,3 Lee−Yang−Parr correlation,4 and the
global hybrid ideas of Becke,5 ultimately led to the hugely
successful B3LYP.6 Since then, the number of functionals and
the number of parameters have proliferated,7,8 and often
dozens of parameters are fitted to dozens of databases, with
thousands of benchmark data. Some of the most recent
empirical functionals9 achieve remarkable accuracy for
molecular systems.
There are many pitfalls to such fitting, but we focus on just

one. This danger is unambiguous, has nothing to do with
choices of parameters or data sets, and is entirely avoidable.
Almost all such fittings consist of running one or more self-
consistent DFT calculations, evaluating an energy difference,
and comparing it with a (presumably accurate) energy from
the database. (In the case of bond lengths, the difference is an
infinitesimal, determining where an energy derivative van-
ishes.) The accuracy of self-consistent densities was recently
highlighted,10 as was how errors in the density can be related
to errors in the energy.11−23

The density-driven error is the (typically small) contribution
to the energy error due to the error in the self-consistent
density. So long as density-driven errors were small compared
to the functional errors (as was the case in the halcyon days of
B3LYP), they were irrelevant. But in the modern era of vast
databases that include weak interactions, stretched bonds, etc.,
these errors are sometimes as big as (or larger than) the
functional errors.20,23 However, the common practice of direct

comparison with accurate energies conflates both errors and
cannot distinguish the two. Recent advances in machine
learning of density functionals target the density as well as the
energy and likely succeed because both errors are simulta-
neously minimized.24

The cure for this difficulty is simple: where relevant,
empirical schemes should be trained on purely functional
errors; that is, the functional error of a parametrized
approximation to the energy should be optimized against
accurate energy databases, rather than the self-consistent error.
For calculations that are not density-sensitive, the differences
are so small as to make this irrelevant. But for those that are,
this procedure isolates the self-consistency error and so avoids
the corruption of the optimization process, allowing density-
sensitive cases to be included even in training.
The current Letter highlights the consequences of ignoring

this distinction when optimizing parameters in empirical
functionals. We first create a totally artificial problem to
emphasize the difficulties, especially when one uses a semilocal
approximation for the self-consistent density but a more
accurate form for the energy. In this case, we show how the
exact functional is missed by the standard procedure. Next, we
take the D3 correction of Grimme and co-workers25 and show
how, if complexes with large density-driven errors are naively
included, the results become noticeably worse. On the other
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hand, the use of DC-DFT allows previous good results to be
retained and the more difficult complexes to be included. We
also apply our method to double-hybrids (DHs), producing a
combination that competes with similar functionals but still
works when the density sensitivity is large. Finally, we find that
empirical range-separated hybrid functionals suffer less from
density-driven errors than their conventional global counter-
parts.
Background. The theory of density-corrected DFT (DC-

DFT) has been developed over the past decade.15,26 Whenever
a self-consistent (SC) DFT calculation is run, there are two
distinct sources of error. The total error of such calculations is
ΔE = Ẽ[ñ] − E[n], where E and n are the exact energy
functional and density, and Ẽ and ñ are their approximate
counterparts. We decompose ΔE as17,22,27

E E n E n E n E n
E ED F

Δ = [ ] − [ ] + [ ] − [ ]∼∼ ∼ ∼

Δ Δ
´ ≠ÖÖÖÖÖÖÖÖÖÖÖÖÖÖÖ ÆÖÖÖÖÖÖÖÖÖÖÖÖÖÖÖ ´ ≠ÖÖÖÖÖÖÖÖÖÖÖÖÖÖ ÆÖÖÖÖÖÖÖÖÖÖÖÖÖÖ

(1)

where ΔEF is the functional error, defined as the error that
would be found if the exact density were used, while ΔED is the
(usually much smaller) contribution to the energy error due to
the error in the self-consistent density.
For the purposes of this Letter, the general form of a 4-

parameter double-hybrid functional (DH 4p) can be written as

E E E E E E

E E
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ab initio
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where EX
Slater is the local density approximation for exchange

and EX
HF is the HF exchange; ẼX

GGA and ẼC
GGA denote the

approximate GGA exchange and correlation energy, respec-
tively; and EC

ab initio is the correlation energy from an ab initio
calculation such as MP2. There are numerous sets of optimal
parameters depending on the choice and number of
parameters. For example, the one-parameter DH functional
suggested by Sharkas et al. has the form28

E E E E E E( ) ( )XC
DH1p

XC
GGA

X
HF

X
GGA 2

C
ab initio

C
GGAα α= + − + −
(3)

which is based on adiabatic connection arguments.28 (This is eq
2 where β = 1 − α and δ = 1 − γ = α2.) The standard
procedure then is to run self-consistent calculations of eq 2
without the ab initio correlation, but evaluate energies with the
full DH expression on the orbitals.28−30 The parameters are
then chosen to minimize errors for specific molecular data sets.
As we show, this assumes that density-driven differences
between this and doing the entire procedure self-consistently
are negligible.
Often, highly accurate densities required in eq 1 are too

expensive to calculate. A practical measure of density
sensitivity is given by22,23,27

S E n E nLDA HF̃ = | [̃ ] − [̃ ]| (4)

where tilde indicates a given functional approximation. Given
the HF tendency to overlocalize, the LDA tendency to
delocalize, and that both are nonempirical, S̃ is a practical
guide to the density sensitivity of a given reaction and
approximate functional. For small molecules, S̃ > 2 kcal/mol
implies density sensitivity and suggests DC-DFT will improve
a functional’s performance.22 In such cases, usually the HF
density is sufficient to produce improved energies (HF-DFT).

Illustration: Missing the Exact Solution for One Electron. In
this section, we illustrate the dangers of ignoring the
distinction between density-driven and functional errors in a
simple, toy model: A simplified hybrid applied to the
elementary case of H2

+ as a function of bond length, which
is a paradigm of self-interaction error, or more generally,
delocalization error.31,32 Standard semilocal approximations
yield long-recognized catastrophic errors as the bond is
stretched, missing entirely the dissociation limit (see Figure
1).32 An HF calculation trivially gets this exactly right, because
it is exact for (fully spin-polarized) one-electron systems.

Figure 1a shows the exact binding curve (black) easily found
by HF, and two other curves of the PBEX evaluated either self-
consistently (blue) or on the HF density (green). The largely
irrelevant difference between blue and green curves shows that
this is a true functional error, not a density-driven one. Even on
the exact density, PBEX fails very badly as the bond is
stretched. However, the difference in the two curves becomes
greater than 2 kcal/mol at about 1.5 Å, showing a density
sensitivity (the curve with LDA density is indistinguishable
from the self-consistent curve) in this problem. (Standard HF-

Figure 1. Potential energy surface (PES) of H2
+ from (a) exactly

(black), self-consistent PBEX (blue) and PBEX on the exact (HF)
density (green) and on the LDA density (gray); (b) the toy functional
of eq 2 with γ = δ = 0 and no HF in the self-consistent density, with
the a and b parameters optimized in different regions: (magenta) the
density-insensitive (DI) region (0.9−1.5 Å), (green) the density-
sensitive (DS) region (2.5−3.1 Å), (blue) combination of both DS
and DI regions. The inset shows ΔE decomposition for the toy
functional trained on the DI region. See also Figures S1 and S2 and
Table S2.
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DFT produces accurate curves for heteronuclear diatomics, not
homonuclear ones.19,20)
Now, to mimic the standard DH procedure, we perform self-

consistent calculations without the HF contribution (because it
yields the exact answer in this case), but we evaluate the energy
with it included. We apply the DH philosophy to our H2

+

molecule, using different separations to generate data sets.
Because this is a one-electron system, we simplify the general
DH form to just exchange, setting γ = δ = 0 in eq 2, and use
the PBE exchange33 as a GGA. Figure 1b shows the results of
training in the density-sensitive (stretched, DS) and density-
insensitive (near equilibrium, DI) region of the binding curve.
In each case, the optimal parametrization yields accurate
energies on the training data but fails badly outside the training
range. Even a combination of both equilibrium and stretched
data does not help much.
How can this be happening? Obviously, if we set α = 1 and β

= 0 in eq 2, we get HF and so produce the exact answer. But,
because the self-consistent calculation uses only a GGA form,
which has an unbalanced self-interaction error as the bond is
stretched, the exact result is never found. To quantify, we
define

D n E n E n[ ′] = [̃ ′] − [̃ ] (5)

generalizing26 ΔED to arbitrary densities (D[ñ] = ΔED, and
D[n] = 0). We decompose the error for the functional trained
near equilibrium, showing ΔEF and D in the inset of Figure 1b.
The optimal parameters (which are nonsensical, see Table S2
of the Supporting Information) keep the total error to a
minimum in the training region where ΔEF and D cancel each
other by being about equal and opposite. Outside the training
region of our H2

+ curve, this artificial cancellation of errors fails
badly. Obviously, we trivially solve this toy problem if we
always train on the HF (exact, in this case) density instead of
the self-consistent GGA density.
DFT-D3 for Weak Interactions. The D3 empirical correction

of Grimme and co-workers has become a standard technique
for improving the accuracy of DFT approximations when
applied to noncovalent interactions.25,34 While most such
calculations are density-insensitive, DFT calculations of
specific types of noncovalent interactions, such as halogen
bonds, are plagued by density errors, which can be larger than
the D3 correction itself.23

HF-DFT, as a simple form of DC-DFT, fixes this problem by
replacing the SC density and orbitals with those of HF, for
which semilocal functionals yield more accurate energies in
such cases.17,22,23,26 The differences between HF-DFT and
exact DC-DFT are typically negligible relative to the
improvements of HF-DFT over self-consistent DFT when
density-driven errors are significant.27 This does not imply that
the pointwise accuracy of the underlying HF density is better
than that of SC-DFT densities, even in cases of large density-
driven errors.22

The example of ref 23 was an extreme case. Here we study
the effects of density sensitivity on SC-DFT-D3 calculations of
weak interactions when they are more subtle. We use 12 data
sets (7 from the original D3 parametrization25) of noncovalent
interactions (320 data points in total, see Table S1 of the
Supporting Information).35 The data points are classified as
DS or DI based on their PBE sensitivity, SPBE (see eq 4 and
Figure S3). Only 46 are DS, and these are mostly from B3036

and WATER27,35 with only one such data point present in the
data set used for the training of the original D3 parameters.

In Table 1, we demonstrate the importance of accounting
for the density sensitivity when optimizing parameters for D3

corrections. The first two numbers in the second column show
the dramatic reduction in error in the PBE functional when the
original D3 correction is made on the density-insensitive cases.
The next entry shows that when we optimize over our much
expanded database, the errors for DI cases are only slightly
worse. But if we optimize specifically over our DS cases (fourth
entry), this greatly worsens results on our DI test cases.
Moving over one column, we find results when tested on the

DS cases. Now the original D3 parametrization yields a large
(greater than 6 kcal/mol) error, demonstrating that density-
sensitivity creates large errors. Even when optimized for DS
cases, the error remains about 3 kcal/mol.
In the next column, we report the DI test results, but using

HF densities instead of SC densities. In all cases of interest, the
errors are slightly reduced once D3 with any of the parameters
is turned on. The errors fall by more than a factor of 6 if the
D3 is trained on the DI cases (from 1.89 to 0.31 kcal/mol).
Furthermore, the differences between the optimal D3
parameters for DS and DI cases are much smaller when HF
densities are used. Figure 2 shows the variation of the error
with parameters. Figure 2a shows the usual case (SC densities
on DI cases). Figure 2b is SC densities on DS cases, showing a
totally different landscape. A green circle lying at the minimum
of case (a) is denoted in all three panels. Figure 2c is HF
densities on DS cases, showing about the same landscape as
panel (a).
Finally, the fourth column of Table 1 shows results on the

DS cases using HF densities. While overall these are much less
accurate than the DI cases (by about a factor of 3), they are
much better than those of column 2, which uses SC densities.
From these findings we can also see the effects of including

DS cases in the training set. Their naive inclusion without the
density correction via HF-DFT gives some improvements for
DS cases at the cost of deteriorated accuracy for DI cases
resulting from the abrupt changes in the optimal parameters.
On the other hand, after the density correction is applied, the
inclusion of DS cases in the training set improves their
accuracy without the side effects for DI cases (Table 1) and
without abrupt changes in the parameter landscape (Figure 2).
Most of the DS noncovalent complexes used in the training

set in Table 1 belong to the B30 and WATER27 data sets. In
Figure 3, we compare errors of SC-PBE and HF-PBE, with and
without the (revised) D3 correction for binding energies of

Table 1. Mean Absolute Errors (kcal/mol) of PBE and
Modifications on Density-Insensitive (DI) and Density-
Sensitive (DS) Test Cases (Columns) versus Optimization
on Various Databases (Rows), with Self-Consistent (SC)
Densities on Left and HF Densities on Righta

[SC] [HF]

opt. data set DI DS DI DS

without opt. 1.53 2.90 1.89 4.95
D3orig 0.43 6.74 0.42 1.20
12DB 0.48 5.66 0.31 0.98
DS-12DB 1.47 2.96 0.38 0.87
DI-12DB 0.42 6.53 0.31 1.01

aD3orig denotes the original Grimme dataset; 12DB is our large (320
values) mixed dataset; DI-12DB are its 274 DI cases, and DS-12DB
its 46 DS cases.
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small water clusters of the WATER27 data set. The standard
DFT calculations of these binding energies are highly DS, as
shown by the large values for SPBE shown in Figure 3.
We see that HF-DFT corrections are larger than D3 here

and that D3 on self-consistent densities actually corrects in the
wrong direction. HF-DFT-D3 reduces errors for the largest
clusters from about 6 kcal/mol to less than 1 kcal/mol and
thus delivers the performance comparable to ωB97M-V,9

which includes nonlocal correlation,37 and BL1p (a DH that
will be introduced later).
Double-Hybrids. The energy functional of widely popular

DHs (e.g., eq 2) is typically evaluated on the hybrid density and
orbitals found in a self-consistent calculation that neglects the
EC
ab initio term.28,29 In contrast, we find that HF-DHs obtained

by applying a DH energy expression to the HF density and
orbitals yield an overall accuracy competitive with their
standard counterparts but remain accurate for cases where
the standard DHs fail because of density sensitivity. We test
the HF-DH idea with only one empirical parameter. On the
basis of eq 3, we use here a combination of B88 exchange,3

semilocal LYP correlation,4 and MP2 correlation for EC
ab initio.38

We call this functional BL1p. Also, see Figure S4 to compare
1DH-BLYP (BL1p[SC]) of ref 28 and BL1p[HF]. Here we do
not aim at reaching the accuracy limit of the HF-DH approach.
This is already prohibited by a functional form of eq 3, which

contains only one empirical parameter. Our goal is to show
that this approach delivers an overall performance comparable
to the standard DHs while not being plagued by large density-
driven errors. Thus, we perform the optimization of α of eq 3
in an old-fashioned way, by training BL1p[HF] on the AE6
data set, containing atomization energies of 6 molecules.39 The
results of the training are shown in Figure 4. At α = 0, our

BL1p reduces to HF-BLYP, whereas at α = 1, it reduces to
MP2. The optimal BL1p that minimizes MAE for AE6 has α =
0.82, which varies little between molecules, except for SiH4
whose minimum is much shallower. Also, the MAE of optimal
BL1p is about 7.5 kcal/mol smaller than the α = 0 case (HF-
BLYP) and about 9 kcal/mol smaller than the α = 1 case
(MP2).
In Figure 5, we compare the performance of BL1p with the

standard DHs (B2PLYP29 and XYG340), hybrids (B3LYP,
M06, M06-2X), and also the range-separated functional
(ωB97M-V9), which we detail in the Supporting Information.
This figure shows that the one-parameter BL1p, trained for
only 6 atomization energies, yields an accuracy that is
competitive with the standard DHs for all databases and
works for noncovalent interactions, without using Grimme’s
empirical correction. For example, BL1p does well for the π−π
stacking interactions where MP2 is known to severely
overbind.41,42 BL1p also contains MP2 correlation, but it has
much less overbinding than MP2 and reduces errors by 1/4

Figure 2. Mean absolute error (MAE) of PBE-D3 as a function of dispersion parameters,25 for various densities and test sets: (a) self-consistent
(SC) density on density-insensitive (DI) cases, (b) SC density for density-sensitive (DS) cases, and (c) HF density for DS cases. Contours are
shifted by the minimum value (upper left corner) for clarity. The green circle is at the position of the global minimum of panel (a).

Figure 3. PBE binding energy error for small water clusters, Eint =
nEH2O − E(H2O)n (n = 2−6), in WATER27 data set. Blue denotes self-
consistent (PBE), while red is for the HF density (HF-PBE); dashed
is without dispersion correction, while solid denotes with D3 (revised
is similar to original). The gray bars show the density-sensitivity of eq
4. For comparison, we also show ωB97M-V (magenta) and BL1p
(green, defined in text) results.

Figure 4. Absolute errors for the AE6 data set of BL1p as a function
of α (see eq 3) for individual molecules (dashed lines). In the black
solid curve, where the averaged errors are shown, the minimum is
achieved at α = 0.82.
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(see Figure S7 in the Supporting Information). Usually, we
recommend against using the HF density when it suffers from
spin-contamination.17 Nevertheless, for all data in this section,
we include the spin-contaminated cases for fair comparison.
Performance without spin-contaminated cases is shown in the
Supporting Information (see Table S3).
Returning to our starting point, stretched NaCl is a

prototypical case where self-consistent hybrids and GGAs are
contaminated by large density errors.19 These errors are typical
of semilocal functionals for dissociating heterodimers.43,44 HF
densities fix this problem, and HF-DFT is able to dissociate
heterodimers correctly.19 From Figure 6, in contrast to

standard DHs (B2PLYP and XYG3 shown here) that fail at
large bond lengths, our BL1p, as a representative of HF-DH,
dissociates NaCl correctly (see also Figure S6).
Another case where BL1p outperforms other methods is the

SIE4×4 data set, containing four positively charged dimers at
four different separations, where standard DFT methods have
large self-interaction error.35 Figure 7 shows the dissociation
curve of He2

+, as a representative of this data set. First, the
errors of the standard DFT methods for He2

+ are almost
entirely functional errors (see Figure S5), because they differ

little between accurate and self-consistent densities. The
accurate densities are obtained by Kohn−Sham inversion
from CCSD densities.27 In this way, the source of error of the
standard DFT for He2

+ is very different from that of stretched
NaCl. Figure 7 shows that, even though these are not density-
driven errors, the error of BL1p and XYG3 for He2

+ is much
smaller than that of other approaches because of the high
amount of exact exchange.
Range-Separated versus Conventional Hybrids. We have shown

a number of examples where large density-driven errors of
conventional (global) hybrid functionals are substantially
reduced when they are evaluated on the HF instead of SC
densities. Range-separated hybrids (RSHs) often use 100% of
the HF exchange in the long range (lr)9,45,46 and so should
suffer less from density-driven errors.47 To test this, we use
ωB97M-V as a representative of RSHs,9 given its remarkable
performance for many of the databases in Figure 5. We will
compare ωB97M-V with B97M-V, its conventional analogue.48

The density-driven errors of ωB97M-V and B97M-V are
shown in Figure 8 for our two standard cases, with PBE and
B3LYP also shown for comparison. For H2

+, the HF density is

Figure 5. MAEs for several methods on many databases: BL1p, other double-hybrids (B2PLYP and XYG3), hybrids (B3LYP,M06, M06-2X),
range-separated meta-GGA hybrid (ωB97M-V), and MP2.

Figure 6. Dissociation curves of NaCl obtained from various
approaches. For stretched bond lengths, standard double-hybrid
functionals fail because of the density-driven errors (see ref 19). Note
that only BL1p uses HF densities.

Figure 7. Dissociation curve of He2
+ obtained from various

functionals. See also Figure S5, showing that the errors of standard
functionals for He2

+ are mostly functional errors, because self-
consistent results are almost identical to those when the functionals
are applied to accurate densities (obtained from the Kohn−Sham
inversion scheme from the CCSD wave function27).
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exact, while for NaCl, we invert the accurate Kohn−Sham
density from CCSD.27 In each case, the density-driven error of
ωB97M-V is much smaller than that of the other functionals. It
does not vanish, because of the semilocal part of the functional.
We see similar behavior for larger systems where the error of
conventional hybrid functionals is contaminated by the
densities and is much smaller in ωB97M-V. Sensitivity plots
are used as a diagnostic tool for density-driven errors, and in
Figure 9 we show that the sensitivity of ωB97M-V for the
WATER27 complexes is a fraction of that of B3LYP and
B97M-V.
We have shown the dangers of ignoring density errors in the

construction of empirical approximations. In our simple H2
+

example, a parametrized semilocal functional trained on a
limited region of the H2

+ binding curve fails in all other
regions. Even high accuracy in the training region results from
an enforced error cancellation between the density and
functional error (eq 1), which fails outside this region. We
found that the standard DFT with empirical D3 corrections
breaks down in density-sensitive calculations of noncovalent
systems but is fixed by using the HF density.
We also found that resilience to density-driven errors could

be achieved with simple 1-parameter double-hybrids, once they
are trained and applied to HF densities. As always, our use of
HF densities does not imply that they are point-wise more
accurate than self-consistent densities, but simply that they
yield more accurate energetics when a reaction is density-

sensitive. Our BL1p is trained only on atomization energies of
only 6 molecules, but its accuracy is comparable to the
standard doubled hybrids tested here. Moreover, ωB97M-V
outperforms BL1p for most of the data sets considered in
Figure 5, except for the SIE4×4 data set, where BL1p does
much better. BL1p would also be beaten by ωB97(2), a very
recent highly accurate DH designed to improve over ωB97M-
V.49 Given its excellent performance,49,50 we expect it to beat
BL1p on most of the data sets, but not SIE4×4.
Our goal here is not the introduction of a new empirical XC

functional, but to illustrate contamination due to density errors
in fitting procedures and to show how minimizing the
functional error can improve the performance of empirical
functionals. Thus, our primitively optimized BL1p does not
reach the accuracy limit of the HF-DH class of functionals.
Technical advances in optimization and larger parameter
spaces could further improve its accuracy. Furthermore, to
improve HF-DHs, one may also use the new insights into
functionals that explicitly depend on the HF density obtained
from the adiabatic connection that has the MP2 theory as its
weak-interaction expansion.51,52 Finally, we have found that
using 100% of HF exchange in range-separated hybrids means
they suffer much less from density-driven errors than their
conventional counterparts.
In summary, DFT energy errors can be separated into

functional and density-driven using DC-DFT. To avoid
inaccuracies, empirical functionals can be trained on functional
errors only, where practical. In cases of large density sensitivity,
HF densities (unless flawed by, e.g., spin-contamination) are
typically more useful than self-consistent semilocal densities.
With 100% exchange at large distances, range-separated
functionals are relatively density-insensitive and suffer much
less from these issues.

■ COMPUTATIONAL DETAILS
All HF, DFT, HF-DFT, and MP2 calculations have been
performed with the TURBOMOLE v7.0.2.53 and PYSCF
v1.7.2.54 The following functionals have been used in DFT and
HF-DFT calculations: LDA (SVWN1,55), GGA (PBE33 and
BLYP3,4), mGGA (TPSS56), hybrids (B3LYP,6 PBE0,57 M06,
M06-2X,58 B97M-V,48 ωB97M-V,9 B2PLYP,29 and XYG340).
The scripts for performing HF-DFT energy calculations are
available.59 Unless otherwise stated, the def2-QZVPPD basis
set has been used. All geometries and the multiplicities except
for the AE639 have been taken from ref 35. Further

Figure 8. Density-driven errors (see eq 1) of selected functionals
along the dissociation curves of:e H2

+ (top panel) and NaCl (bottom
panel). For H2

+, the (exact) HF density is used to extract the density-
driven errors. For NaCl, we use CCSD as a reference in tandem with
the Kohn−Sham inversion scheme described in ref 27 to obtain the
“exact” density and orbitals needed to isolate density-driven errors.

Figure 9. Sensitivity (see eq 4) of selected functionals vs PBE
sensitivities for binding energies of the WATER27 clusters.
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computational details can be found in the Supporting
Information.
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