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ABSTRACT: Using the dual Kantorovich formulation, we compute the
strictly correlated electrons (SCE) functional (corresponding to the exact
strong-interaction limit of density functional theory) for the hydrogen
molecule along the dissociation curve. We use an exact relation between the
Kantorovich potential and the optimal map to compute the comotion
function, exploring corrections based on it. In particular, we analyze how the
SCE functional transforms in an exact way the electron−electron distance
into a one-body quantity, a feature that can be exploited to build new
approximate functionals. We also show that the dual Kantorovich
formulation provides in a natural way the constant in the Kohn−Sham
potential recently introduced by Levy and Zahariev [Phys. Rev. Lett. 2014,
113, 113002] for finite systems.

1. INTRODUCTION

A good accuracy−price ratio makes Kohn−Sham Density
Functional Theory (KS DFT)1 the most used method for
electronic structure calculations in various fields from
biochemistry to material science. Unlike standard mean-field
theories, KS DFT is, in principle, an exact theory: if the
exchange-correlation functional Exc[ρ] were known, KS DFT
would yield the exact ground state energy and density of any
many-electron system. In practice, different approximations for
Exc[ρ] are often used to tackle different classes of systems,
properties, or processes, and despite enormous successes, there
are still problems that hamper KS DFT’s overall predictive
power. The lack of accuracy of KS DFT for certain systems is a
reflection of the fundamental issues that present approxima-
tions still encounter.2,3 In particular, the most challenging
problems are related to near-degeneracy and strong correlation
effects, where KS DFT easily gives even qualitatively wrong
results. Crucial examples for chemistry are stretched bonds and
systems containing d and f elements. In such cases, broken
symmetry solutions often give better energies, but in complex
systems they might be sensitive to the functional chosen, and
they give a wrong characterization of several properties.4

Mainstream strategies to improve the approximations for the
xc functional of KS theory follow the idea of a “Jacob’s
ladder,”3,5 based on an ansatz for the dependence of the xc
functional on the relevant “ingredients,” increasing the
complexity of the approximations in a hierarchical manner
(local density, local density gradients, local KS kinetic energy,
KS occupied orbitals, up to the KS virtuals). A (sometimes very
large) number of parameters can be also introduced and fitted
to specific data sets.6 We have to keep in mind that KS DFT is
based on a system of noninteracting Fermions, treating the
electron−electron interactions in an approximate way. Current

available approximations mainly work when the physics of the
true, interacting system is not too different from the
noninteracting one of Kohn and Sham: for these cases, the
“Jacob’s ladder” strategy proved to be highly successful in
capturing the (relatively small) xc effects. Strongly correlated
systems, however, are radically different from noninteracting
ones. In these cases, the xc functional needs to be a drastic
correction, and traditional strategies might not be the best path
to follow.
A possible, rigorous starting point to build this drastic

correction is provided by the limit of infinite coupling strength
of the exact xc functional, called the “strictly-correlated
electrons” (SCE) functional.7−9 The SCE functional has a
highly nonlocal dependence on the density that encodes new
information with respect to the traditional ingredients of the
“Jacob’s ladder” approach. Despite this high nonlocality, the
SCE functional derivative with respect to the electronic density
can be computed exactly via a powerful shortcut,10,11 yielding a
one-body multiplicative Kohn−Sham potential that is truly able
to make noninteracting electrons reproduce key features of
strongly correlated ones, without artificially breaking any
symmetry, as shown by self-consistent KS SCE results on
model semiconductor quantum wires and quantum dots.11,12

The SCE functional has been also extended to fractional
electron numbers,13 displaying a derivative discontinuity at
integer electron numbers in low-density systems even in a spin-
restricted framework, a key property to describe the ground
state of strongly correlated systems,2 as well as important
applications such as quantum transport,14 missed by the
standard approximate xc functionals.2 Simple tests on one-
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dimensional model chemical systems showed that the xc SCE
functional is able to correctly stretch a bond in KS theory
without symmetry breaking, while largely overcorrelating at
weak- and intermediate correlation regimes. A very recent15

numerical study on the three-dimensional H2 molecule also
found results that are in qualitative agreement with the one-
dimensional ones, confirming that the latter were good models
for the chemistry in this case, as inferred in ref 16. The
challenge is then to retain the good performances of the SCE
functional at strong correlation while adding corrections for (or
interpolating to) the weak and intermediate chemically relevant
correlation regimes. First corrections to KS SCE tested on one-
dimensional models17 and to the anions of the He isoelectronic
series18 have been found to improve substantially at different
correlation regimes but are still not satisfactory.
Overall, the asymptotic exactness of the nonlocal physics of

the xc SCE functional makes it a very promising ingredient to
overcome the present problems of KS DFT, even if the SCE
nonlocality is probably too extreme, and one will need to
reduce it in some approximate way: a first step in this sense has
been undertaken in ref 19. The original formulation of the SCE
functional was based on the idea that, in the strong-interaction
limit, the electrons are infinitely (or perfectly) correlated. A
change of the position of one electron in the system affects the
positions of all the others, a feature that is captured by
mathematical objects, known as comotion functions fi(r), which
are nonlocal functionals of the density.7,8 Alongside this original
formulation, more recently another SCE formulation appeared,
based on the mass transportation theory (or optimal transport)
formalism,20−23 an important field of mathematics and
economics.24−26 The optimal transport formulation defines a
dual problem that corresponds to a maximization under linear
constraints, yielding in one shot the functional and its
functional derivative. First proof-of-principle calculations with
this dual formulation have been carried out by Mendl and
Lin.22 To show that their algorithm works for a general 3D
geometry, they have applied it to a model density for a trimer
with up to six electrons, consisting of three different gaussians
centered arbitrarily, thus obtaining the SCE functional and
potential bypassing the comotion functions. However, the dual
formulation is expensive, as it involves a high-dimensional
minimization. The formulation with the comotion functions is
certainly more appealing (as it defines a sparse problem) and
more physically transparent. A promising route to use the
physics of the xc SCE functional to improve DFT
approximations could be the construction of approximate
comotion functions, i.e., to build functionals totally inspired to
the SCE form, and to combine them with suitable corrections,
like the ones of refs 17 and 18. To be able to approximate the
comotion functions in general 3D geometry, it is essential to
gain insight into their exact form as much as possible, as well as
to understand if corrections based on them could really
improve the KS SCE results.
In this work, we construct accurate comotion functions for

the 3D hydrogen molecule along the dissociation curve, by
means of a powerful result from mass transportation theory: for
the special case of N = 2 particles, it is possible from the dual
formulation to obtain the comotion function in closed form
(according to the basis chosen for the potential). Thus, we first
implement the dual formulation using a physically motivated
parametrization for the SCE potential (different from the one
used by Mendl and Lin22), and we then extract the comotion
function at different internuclear separations. We then compute

the full dissociation energy curve by using the bare xc SCE
functional and by adding to it two corrections constructed
using our accurate comotion function. As already observed in
the 1D calculations and in ref 15, we find that the xc SCE
functional is able to correctly dissociate the molecule in the
spin-restricted KS formalism, but as expected, it gives total
energies way too low near the equilibrium distance. Notice that
in ref 15 the comotion function was obtained numerically, using
a smart grid. Here we use a basis set approach, which is crucial
to constructing corrections based on the comotion function
itself. We find that using the comotion functions to build
corrections largely improves the KS SCE results, providing
dissociation curves significantly better than the ones from
standard functionals. The interesting point is that the comotion
function transforms rigorously a two-body property (the
electron−electron distance) into a one-body quantity. We
also show that the dual Kantorovich formulation provides in a
natural way the Levy and Zahariev constant of the Kohn−Sham
potential for finite systems27 and that this constant has a very
well-defined physical meaning in the strong-interaction limit of
the DFT adiabatic connection.

2. KOHN−SHAM DFT WITH THE SCE FUNCTIONAL
The strictly correlated electrons (SCE) functional can be briefly
introduced starting from the standard adiabatic connection in
DFT, in which the electron−electron repulsion operator V̂ee in
the Hohenberg−Kohn functional is rescaled by a real parameter
λ:28,29

ρ λ= ⟨Ψ| ̂ + ̂ |Ψ⟩λ
ρΨ→

F T V[ ] min ee (1)

where, as usual,30 the search is over all Fermionic wave
functions Ψ yielding the density ρ(r). The adiabatic connection
provides an exact formula for the Hartree-exchange-correlation
functional EHxc[ρ]:

28,29

∫ ∫ρ ρ ρ λ ρ λ= ⟨Ψ | ̂ |Ψ ⟩ ≡λ λ
λE V V[ ] [ ] [ ] d [ ] dHxc

0

1

ee
0

1

ee (2)

where Ψλ[ρ] is the minimizing wave function in eq 1. Although
λ in this formula varies only between 0 (the Kohn−Sham
system) and 1 (the physical system), the situation in which λ >
1 can provide very useful information to build approximations.
The SCE functional Vee

SCE[ρ] corresponds to the limit of infinite
coupling strength, λ → ∞, of the integrand in eq 2:

ρ ρ ρ ρ= = ⟨Ψ | ̂ |Ψ ⟩
λ

λ

→∞
∞ ∞V V V[ ] lim [ ] [ ] [ ]ee

SCE
ee ee (3)

and it is the natural counterpart of the KS noninteracting
kinetic energy functional Ts[ρ] = Fλ=0[ρ].
The SCE functional Vee

SCE[ρ] was first introduced by Seidl
and co-workers,7,8,31 and it corresponds to the minimal
Coulomb repulsion among all the wave functions that are
consistent with ρ(r). The square of the minimizing wave
function, |Ψ∞[ρ]|

2, becomes a distribution in this limit,32 and it
describes the maximum possible correlation in the given density
ρ(r): if one of the electrons changes its position, the other
electrons in the system would also change their positions, in
such a way that the new interparticle distances continue to
minimize the total Coulomb repulsion. If we label the position
of one of the electrons in the N-electron system as r, then r
would fix the position of all the other N − 1 electrons via the
so-called comotion functions fi(r), ri = fi(r).

8 The comotion
functions are nonlocal functionals of the one-electron density
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ρ(r): the probability of finding the reference electron at
position r must be the same as the probability of finding the ith
electron at fi(r), a condition given via the following differential
equations8

ρ ρ=d df r f r r r( ( )) ( ) ( )i i (4)

As electrons are indistinguishable, the reference electron at r
could be any electron in the system, so the comotion functions
need to satisfy the following cyclic group properties:8,9

≡

≡

=

=

⋮
=

  

f r r

f r f r

f r f f r

f r f f f r

f f f f r r

( ) ,

( ) ( ),

( ) ( ( )),

( ) ( ( ( ))),

( (... ( ( ))))

N

1

2

3

4

times (5)

In terms of the comotion functions, the SCE functional Vee
SCE[ρ]

can be expressed as32

∫ ∑ρ ρ=
| − |=

V r r
r f r

[ ]
1
2

d ( )
1

( )i

N

i
ee
SCE

2 (6)

Despite the high nonlocal character of the SCE functional,
evident from eq 4, it is possible to find its exact functional
derivative (yielding a one-body multiplicative potential) via the
auxiliary equation10,11

∑∇ = −
−

| − |=

v r
r f r

r f r
( )

( )
( )i

N
i

i
SCE

2
3

(7)

which shows that the SCE potential vSCE(r) exactly represents
the net Coulomb repulsion acting on the electron at position r,
when the many-electron system is described by |Ψ∞[ρ]|

2.
The SCE functional can be used to partition the

Hohenberg−Kohn functional F[ρ] = Fλ=1[ρ] of eq 1 as

ρ ρ ρ ρ ρ= + + +F T V T V[ ] [ ] [ ] [ ] [ ]s ee
SCE

c ee
d

(8)

where both the kinetic correlation energy, Tc[ρ] = ⟨Ψλ=1[ρ]|
T̂ |Ψλ=1[ρ]⟩ − Ts[ρ] and the electron−electron decorrelation
energy33,34 Vee

d [ρ] = ⟨Ψλ=1[ρ]|V̂ee|Ψλ=1[ρ]⟩ − Vee
SCE[ρ] are

positive.
If we neglect Tc[ρ] and Vee

d [ρ], we obtain the KS SCE
approximation, which corresponds to set

ρ ρ≈E V[ ] [ ]Hxc ee
SCE

(9)

and it is equivalent to approximate the minimum of the sum in
the Hohenberg−Kohn functional with the sum of the two
minima

⟨Ψ| ̂ + ̂ |Ψ⟩ ≈ ⟨Ψ| ̂|Ψ⟩ + ⟨Ψ| ̂ |Ψ⟩
ρ ρ ρΨ→ Ψ→ Ψ→

T V T Vmin min minee ee

(10)

yielding a rigorous lower bound to the exact ground-state
energy. Notice that in the low-density limit the sum of the
Hartree and the exact xc functional tends asymptotically to the
SCE functional.

3. THE SCE FUNCTIONAL AND MASS
TRANSPORTATION THEORY

The link between the SCE functional and mass transportation
(or optimal transport) theory was found, independently, by
Buttazzo et al.20 and by Cotar et al.21 Mass transportation
theory dates back to 1781 when Monge24 posed the problem of
finding the most economical way of moving soil from one area
to another. In 1942, Kantorovich25 generalized it to what is
now known as the Kantorovich dual problem. In the past 20
years, optimal transport has developed into one of the most
active fields in mathematics.26 The basic Monge problem
consists in asking what is the most economical way to move a
mass distribution ρ1(r) into another distribution ρ2(r), given
the work c(r1,r2) (called cost) necessary to move a unit mass
from a position r1 to another position r2. The solution to the
Monge problem is then given in terms of an optimal map, which
assigns to every point r of ρ1(r) a unique final destination f(r)
in ρ2(r). The comotion functions turn out to be exactly the
optimal maps for a multimarginal Monge problem with cost
function given by the Coulomb repulsion.20 However, it is very
delicate to prove in general the existence of the set of optimal
map functions for systems with arbitrary dimension and density
(a formal proof for the SCE case is available, up to now, only
for the one-dimensional case35 with any number N of electrons,
and for N = 2 in any dimension and geometry20). It is for that
reason that Kantorovich25 proposed a relaxed formulation of
the Monge problem, in which the goal is to find a transport plan
that gives the probability that, at optimality, a given element r1
of ρ1 be transported in r2 in ρ2. This relaxed problem, in turn,
has a dual formulation, known as the dual Kantorovich
problem, which is closely related to the Legendre transform
formulation of standard DFT36 and corresponds to a
maximization with respect to potentials, under linear
constraints. The maximizing Kantorovich potential u(r) differs
from the SCE potential of eq 7 vSCE(r)defined, for finite
systems, as the functional derivative of Vee

SCE[ρ] supplemented
by the condition vSCE(|r| → ∞) → 0only by a constant
C[ρ]:20

ρ= +u v Cr r( ) ( ) [ ]SCE (11)

As we shall discuss more in detail in section 7, the constant
C[ρ] appearing in the Kantorovich potential is exactly the same
(in the strong-correlation limit) as that recently introduced by
Levy and Zahariev.27

From the optimal-transport point of view, the SCE functional
defines a multimarginal problem, in which all the marginals are
the same, so that the SCE mass-transportation problem
corresponds to a reorganization of the “mass pieces” within
the same density. The dual Kantorovich formulation for
Vee
SCE[ρ], defining the Kantorovich potential u(r), is20

∫ ∑

∑ ∑

ρ ρ=

≤
| − |

=

= >

⎪

⎪

⎪

⎪

⎧
⎨
⎩

⎫
⎬
⎭

V u r ur r r

r r

[ ] max ( ) ( ) d : ( )

1

u i

N

i

i

N

j i

N

i j

ee
SCE

1

1 (12)

Equation 12 is a linear programming problem with an infinite
number of constraints, which could be dealt with by readapting
optimal transport algorithms to the SCE functional, a research
goal that is the object of ongoing efforts.37,38 In a brute force
approach, Mendl and Lin22 reformulated the problem in terms
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of a nested optimization, by introducing a functional g[vSCE] of
vSCE(r):

∑ ∑ ∑=
| − |

−
= > =

g v v
r r

r[ ] min
1

( )
i

N

j i

N

i j i

N

i
r

SCE
{ }

1 1
SCE

i (13)

and then showed that Vee
SCE[ρ] can be found via the following

nested optimization:

∫

∫

∑ ∑ ∑

ρ ρ

ρ

= +

=
| − |

−

+

= > =
⎪ ⎪
⎪ ⎪

⎧
⎨⎪
⎩⎪

⎧
⎨
⎩

⎫
⎬
⎭

⎫
⎬⎪
⎭⎪

{ }V v g v

v

v

r r r

r r
r

r r r

[ ] max ( ) ( ) d [ ]

max min
1

( )

( ) ( ) d

v

v i

N

j i

N

i j i

N

i
r

ee
SCE

SCE SCE

{ } 1 1
SCE

SCE

i

SCE

SCE

(14)

Equation 14 is equivalent to eq 12 of ref 8, obtained by
generalizing the Lieb Legendre transform formulation36 to the
SCE functional.
Notice that eq 12 defines a particular gauge for the

Kantorovich potential u(r), since a constant could be added
to the left-hand side of the inequality yielding a shifted
potential. The Kantorovich potential is historically defined in
such a way that ∫ ρ(r) u(r) dr gives exactly the optimal cost.

4. THE SCE FUNCTIONAL FOR THE HYDROGEN
MOLECULE
4.1. Kantorovich Formulation. To solve the Kantorovich

problem for the H2 molecule, we have used cylindrical
coordinates (z,h,θ). The two protons lie along the z axis,
with the molecular center of inversion at the origin of the
coordinate system. h denotes the distance from the z axis, and θ
is the azimuthal angle. Since the electron density does not
depend on θ, ρ(r) =ρ(h,z), we have vSCE(r) = vSCE(h,z).
Minimization of the SCE classical potential energy8 immedi-
ately yields for the azimuthal angles of the two electrons |θ1−
θ2| = π for any values of the other four coordinates, resulting in
a four-dimensional potential energy function:

= − −

+
+ + −

E v z h v z h

h h z z

( , ) ( , )
1

( ) ( )

pot SCE 1 1 SCE 2 2

1 2
2

1 2
2

(15)

In order to parametrize the SCE potential vSCE(r), Mendl and
Lin22 introduced a “pseudocharge” m(r) to solve eq 14
numerically:

∫= ′
| − ′|

′v
m

r
r

r r
r( )

( )
dSCE (16)

with the following constraint on it:

∫ = −m Nr r( ) d 1
(17)

The role of the “pseudocharge” is to preserve the asymptotic
behavior of the SCE potential. Being a functional derivative of a
self-interaction free functional, the SCE potential decays for |r|
→ ∞ as (N − 1)/|r|.8,10,11 They solved the Kantorovich dual
problem for small atoms and a model trimer molecule (with up
to six electrons) parametrizing the “pseudocharges” with

gaussians centered along the three axes joining the three
“atoms” with the symmetry center of the “molecule.”
Here, we want to include the physics behind the SCE

problem in the parametrization of vSCE(r). From eq 7, we see
that SCE transforms the electron−electron repulsion into an
effective one-body potential that exerts the same net force. This
potential has, on the density of noninteracting electrons, the
same effects of the electron−electron repulsion: it increases
charge localization on the atoms, reducing charge in the
midbond region.39 This is realized through “bumps” or barriers
in the potential. The bumps are present in the exact vHxc(r) and
vSCE(r), and they are crucial to capturing the physics of charge
localization in strongly correlated systems within the KS
framework.11,12,39,40 The standard approximate KS potentials
lack this feature, displaying the well-known deficiencies of
approximate DFT.41 The bump is present at the bond midpoint
of H2 at longer internuclear distances, and it localizes the
electrons around the protons.39,40 If one uses the “pseudo-
charge” algorithm of Mendl and Lin with the pseudocharges
centered between the center of the molecule and the two H
atoms, the corresponding vSCE(r) will have two bumps, instead
of one at the bond midpoint.
In this work, we parametrize vSCE(r) directly, by modeling

the bump in the midbond region. Taking into account the
asymptotic behavior of the SCE potential and the symmetry of
the H2 molecule, we use the following ansatz for vSCE(r):

∑= + +

+=

− −v z h A
a h z

h z
( , ) e

erf( )

i

m

i
pz q h

SCE
1

2 2

2 2
i i

2 2

(18)

where Ai, pi, qi, and a are a set of parameters. The SCE potential
of eq 18 decays as 1/|r| for large r, and the ansatz is flexible
enough to create a bump around the bond midpoint. In
particular, the sum of gaussians models the part of the potential
around the midbond, being able to capture the features
analyzed in refs 40 and 39, while the second term in the right-
hand side of eq 18 ensures the correct long-range decay.
We have performed the nested optimization of eq 14 to

calculate Vee
SCE[ρ] on a postfunctional level from a FCI density

obtained from the GAMESS-US package,42 within the aug-cc-
pV6Z basis set of Dunning.43 We fitted the obtained density on
a sum of Gaussian functions centered along the nuclear axis, so
the density reads as follows:

∑ρ α= +β γ β γ

=

− − + − + +z h( , ) (e e )
i

Q

i
z h z h

1

(( ) ) (( ) )i i i i
2 2 2 2 2 2

(19)

where αi, βi, and γi are fitting parameters. This way, the term
∫ vSCE(r) ρ(r) dr which appears in eq 14 can be evaluated
analytically (see Appendix). The nested optimization of eq 14
has then been done numerically for a set of interatomic
distances.

4.2. Dissociation Curve from the Kantorovich Prob-
lem. From the numerical maximization of eq 14, we have
obtained Vee

SCE[ρ]. From the same density, we also constructed
Ts[ρ] and the expectation of the external potential. The
resulting KS SCE dissociation curve is shown in Figure 1. We
compare the KS SCE results with those of the B3LYP
functional, restricted Hartree−Fock (HF), full-CI, and the
nonlocal radius functional (NLR),19 which is meant to be an
approximation for KS SCE. The B3LYP, restricted HF and full-
CI dissociation curves were calculated with the GAMESS-US
package,42 within the same aug-cc-pV6Z basis set of Dunning.43
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The NLR functional is built from a model for the xc hole in the
strong-correlation limit, whose details are given in ref 19, and
the NLR data in Figure 1 were taken from the same reference.
As expected from the 1D model studied in ref 17 and the 3D

implementation of ref 15, we see that around equilibrium the
KS SCE error is very large, due to the tendency of KS SCE to
overcorrelate the electrons. With the increase of the
internuclear distance, KS SCE starts to be more accurate,
becoming exact in the dissociation limit. The accuracy of the
KS SCE functional in the limit R → ∞ can be understood by

looking at the shape of the very accurate adiabatic connection
curves Wλ[ρ] = Vee

λ [ρ] − EH[ρ] for H2 obtained by Teale et
al.44 The slope ofWλ[ρ] at λ = 0 is getting more negative as the
bond length increases, and it diverges at the dissociation limit.
For shorter bond lengths, the exact Wλ[ρ] curve for 0 ≤ λ ≤ 1
is significantly above the W∞[ρ] value (Wλ[ρ] ≈ W∞[ρ]
corresponds to the KS SCE approximation). This leads to a
serious overestimation (in absolute terms) of the (negative)
area above the Wλ[ρ] = W∞[ρ] line with respect to the area
above the exact Wλ[ρ] curve. On the other hand, for large bond
lengths, the accurate adiabatic curves have a very negative slope
at λ = 0 with Wλ[ρ] values close to W∞[ρ], even for small
positive values of λ. This results in a very small difference
between W∞[ρ] and Exc[ρ] for large finite bond lengths, the
two becoming equal as the separation between the two protons
goes to infinity.
The NLR functional19 results are very close to the ones from

the KS SCE functional, showing that the former is a good
approximation for the latter.
The bond length from KS SCE is also significantly shorter

(∼1.2 au) than the exact one (∼1.4 au). This is due to the fact
that, as we stretch the bond, the nuclear−electron expectation
value increases, while the electron−electron and nuclear−
nuclear repulsions decrease. The KS SCE method seriously
underestimates the electron−electron repulsion in the equili-
brium region (as the electrons perfectly avoid each other, they
can have a very low electron−electron repulsion expectation
even in a compact density), while the other components
(including Ts[ρ]) are the same. Therefore, KS SCE lowers the

Figure 1. H2 dissociation curve obtained by the following methods:
restricted Hartree−Fock, B3LYP, FCI, KS SCE, and NLR functional of
ref 19, an approximation of the KS SCE method.

Figure 2. Samples of strictly correlated positions {r,f(r)} for the H2 molecule at equilibrium (R = 1.4) and in a stretched configuration (R = 5.0).
The two nuclei in each case lie along the horizontal axis and are shown with green filled circles. Each pair of strictly correlated positions is labeled
with the same letter, e.g., {A,A}={rA,f(rA)}.
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price that has to be paid to shorten the bond length. The KS
SCE method also misses Tc[ρ], but the error from this absence
is significantly smaller than the error for the electronic
repulsion.
4.3. Comotion Function from the Kantorovich

Problem. Once we have solved the Kantorovich problem,
we already have the value of Vee

SCE[ρ] (the maximum in eq 14),
and its functional derivative (the maximizing potential in eq
14), so that we can bypass the comotion functions. However, as
said, the comotion functions can be used to build corrections
beyond KS SCE (which are the object of the next section 5)
and to build approximations to the SCE functional.
In the special case N = 2, we can obtain the comotion

function f(r) from the Kantorivch potential20 by solving eq 7
for f(r):

= +
∇

|∇ |
v

v
f r r

r

r
( )

( )

( )
SCE

SCE
3/2

(20)

which, in our case, corresponds to obtaining the fz and f h
components of the comotion function in cylindrical coor-
dinates:

= +
+
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The computed comotion function satisfies the group properties
given in eq 5, which, in this case, is just f(f(r)) =r. This can be
easily verified by simply noticing that it always holds ∇vSCE(r) =
−∇vSCE(f(r)) (action-reaction principle).
In Figure 2, we show samples of strictly correlated positions

{r,f(r))} for the H2 molecule density at equilibrium distance, R
= 1.4, and at a stretched configuration, R = 5.0. The two nuclei
lie on the horizontal axis and are denoted with green filled
circles. We have selected a series of positions rA, rB, ... by
placing the reference electron close to the right nucleus and
moving it away from it perpendicularly to the bond axis. We
have also set the reference electron at a distance of 0.2 au from
the bond axis, and we have moved it parallel to it. The
corresponding positions f(rA), f(rB), ... appear, as expected,
below the left nucleus.

5. CORRECTIONS TO THE SCE FUNCTIONAL FOR THE
H2 MOLECULE

The KS SCE approximation is very accurate for systems that
are close to the strongly correlated regime. However, as soon as
the effect of correlation is not profound, the KS SCE energies
are unacceptably low. While in some systems studied in physics,
such as electrons confined at semicondutctor hetereostructure
interfaces in quasi-1D11 and quasi-2D geometries,12 the amount
of correlation is directly related to a single parameter, so that it
is possible to predict when KS SCE will be accurate, chemical
systems are more delicate in that sense: they are often in
between the strong and the weak correlation regimes, and it is
not easy to say a priori whether the system is very correlated or

not. It is for that reason that we need to have “indicators” that
can signal whether the overcorrelation of the SCE functional
needs to be suppressed.
To recover the Hohenberg−Kohn functional starting from

KS SCE, we have to construct the functionals Tc[ρ] and Vee
d [ρ]

of eq 8. We consider here two different approaches to construct
the correcting terms, both based on the use of the comotion
function f(r).

5.1. Corrections Based on the SCE Interpaticle
Distance. In refs 11, 18, and 19, a simple correction to KS
SCE in terms of the local density only (so without using the
comotion functions) has been introduced. The correction was
based on the idea of making the approximate Hohenberg−
Kohn functional F[ρ] = Ts[ρ] + Vee

SCE[ρ] + Ekcd[ρ] exact for the
homogeneous electron gas (HEG), where Ekcd[ρ] is an
approximation for Tc[ρ] + Vee

d [ρ]. This requires adding in
the exchange-correlation energy of the HEG (i.e., the LDA xc
energy) and subtracting out the SCE xc energy evaluated on the
uniform gas: Ekcd[ρ] ≈ Exc

LDA[ρ] −W∞
LDA[ρ]. The term W∞

LDA[ρ]
was obtained by using the common assumption that the SCE (λ
or rs → ∞) xc energy of the HEG can be obtained from the
energy of the bcc Wigner crystal. This assumption, however,
has recently been questioned,45 so that it is actually not known
what is the exact value of the SCE xc energy of the HEG: we
only know that it has the form −c/rs, and we have some bounds
for the positive constant c.45 Disregarding for a moment this
issue, we can, as in refs 11 and 18, evaluate the xc energy
densities (for both LDA and SCE), as usual, in terms of the
local Wigner−Seitz radius

πρ
=r r

r
( )

1
( ( ))s 4

3
1/3

(23)

Unfortunately, this approximation turns out to be very drastic.
We have found that, for H2, it yields energies that are even
higher than the Hartree−Fock ones. Even worse, this
approximation fails to recognize one-electron systems (such
as H or He+) and effectively one-electron regions (such as
those in stretched H2) as noninteracting, which is one of the
strengths of the SCE method. This problem is independent of
the value we use for the constant c in the SCE xc energy of the
HEG: it stems from the local nature of the correction.
In the stretched H2 molecule, the local density on each

proton is high, so that the LDA approximation is obviously
physically wrong: it assigns to the xc energy the same value as
for a high-density, weakly correlated HEG. The stretched H2
molecule is, physically, more similar to a Wigner crystal, where
the electrons are kept apart due to the dominance of their
mutual repulsion. In the HEG, the Wigner-Seitz radius rs is a
measure of the average electron−electron distance. The
comotion function allows us to recognize, in each point of
space, that the interelectronic distance is large, even when the
local density is high. This can be done by redefining the
Wigner-Seitz radius as the distance between the two electrons,
which can be uniquely determined in the SCE framework at
each point in space:

= | − | =r Nr r f r( ) ( ) ( 2)s
SCE

(24)

The rs
SCE(r) radius encodes two-body property information on

highly nonlocal character (in terms of the density), despite
being a one-body property itself. This is crucial for systems
such as stretched H2, where the effective Wigner−Seitz radius
should go like the increasingly large bond-length R in regions
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near the atoms, but where the usual local Wigner-Seitz radius
rs(r) is on the order of 1. The standard local density functional
radius rs(r) thus produces a correction which is nonzero as R→
∞, unlike the nonlocal density functional radius rs

SCE(r), which
dissociates significantly better. A similar definition (retaining
the nearest neighbor distance) would also work for a chain of H
atoms, but for larger molecules one should think of a more
general definition, in order to distinguish core and valence.
The simplest way to build approximations based on the

radius rs
SCE(r) is to insert it into the LDA correction used in refs

11 and 18, replacing the standard Wigner-Seitz rs(r). In Figure
3, we show the dissociation curve for H2 corresponding to this

approximation (curve labeled “nonlocal”). The energies at the
equilibrium region are substantially improved with the respect
to KS SCE. However, although asymptotically the right
dissociation limit is reached when R → ∞, the limit is
approached too slowly, producing a positive region in the
dissociation curve, similarly to other methods such as the
random-phase-approximations.46 One of the biggest challenges
for chemistry is, indeed, to bridge the weak and the strong
correlation regimes in the right way.
In general, the two-body information encoded in rs

SCE(r) can
be used in many different ways to build approximate
functionals. Other promising routes could be also based on
the exploration of the kinetic correlation part (which is still very
important also at strong correlation9,47), using the SCE
conditional amplitude.40,48

5.2. Restricted Mode Zero Point Energy Correction. If
we expand the Hohenberg−Kohn functional around λ → ∞,
the next leading term after the SCE functional should be given
by zero-point oscillations around the SCE minimum,9 although
there is still no rigorous proof for that, but only numerical
evidence.33,49 The expansion of the integrand in eq 2 around
λ→ ∞ should be9

ρ ρ
ρ

λ
λ= + +λ→∞ −V V

V
O[ ] [ ]

[ ]
( )p

ee ee
SCE ee

ZPE

(25)

where p ≥ 5/4, and the “ZPE” acronym stands for the “zero-
point energy,” corresponding to the vibrational energy of small
electronic oscillations around their SCE positions. For N
electrons in D dimensions, this energy has the simple form9,17

∫ ∑ρ ρ ω
=

=

−

V
N

r
r r

[ ]
1
2

d
( ) ( )

2n

DN D
n

ee
ZPE

1 (26)

The electron vibrational frequencies are defined as9

ω = ar r( ) ( )n n (27)

where an(r) are the eigenvalues of the Hessian matrix
composed of the second order derivatives of the potential
energy of the SCE system (eq 15 with the angular degrees of
freedom included) with respect to all the electronic
coordinates. Inserting the expansion of eq 25 into eq 2, we
obtain the correction for Tc[ρ] and Vee

d [ρ]:9,17

ρ ρ ρ≈ ≈T V V[ ] [ ] [ ]c ee
d

ee
ZPE

(28)

as expected from the fact that the ZPE is half kinetic and half
potential energy. The total correction Tc[ρ] + Vee

d [ρ] is
generally too large.17 However, one can argue that for chemical
systems usually Ts[ρ] is much closer to the true kinetic energy
than Vee

SCE[ρ] to the true expectation of V̂ee, so that by
correcting only the electron−electron part the balance is
restored. In what follows, we then consider the correction
Tc[ρ] ≈ 0, and Vee

d [ρ] ≈ Vee
ZPE[ρ].

We also make another approximation, in order to simplify
the calculations: we approximate the Hessian matrix with
respect to the symmetry of the system, allowing the two
electrons to vibrate only in a plane. The plane is determined by
their two SCE positions and the internuclear axis. This
approximation sets all the derivatives of Epot with respect to
the azimuthal coordinates (θ1 and θ2) to 0. We call this
approximation restricted-mode zero-point oscillations (rm-
ZPE).
In Figure 4, we show the dissociation energy curve with this

correction. Again, we see that the energy is highly improved at

equilibrium and that the exact dissociation limit is reached too
slowly, even if better than with the nonlocal correction of the
previous section.

6. ENERGY DENSITIES
Modeling the adiabatic connection has been an important
milestone in the construction of approximate xc density

Figure 3. H2 dissociation curves obtained by the following methods:
restricted Hartree−Fock, B3LYP, FCI, LDA correction with the
redefined Wigner−Seitz radius of eq 24 added to KS SCE and KS
SCE.

Figure 4. H2 dissociation curves obtained by the following methods:
restricted Hartree−Fock, B3LYP, FCI, KS SCE with correction for the
electron decorrelation energy obtained by the restricted-mode zero-
point oscillations (rm-ZPE) of electrons and KS SCE.
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functionals (see, e.g., refs 50−53). While most approximations
focus on the physically relevant regime 0 ≤ λ ≤ 1, interpolating
between the λ → 0 and λ → ∞ limits seems a rigorous way to
overcome our lack of knowledge about the λ = 1 region. The
interaction strength interpolation (ISI) of Seidl and co-
workers7,31 is a pioneering density functional of this latter
class. Newer interpolation models, such as the revised ISI9 and
the recent interpolation models of Liu and Burke,54 have a
functional form that behaves better than ISI about the λ→ ∞
limit. These functionals are able to treat different correlation
regimes accurately, but the development of DFT in this
direction encounters a fundamental problem: the lack of size
consistency, as these functionals depend nonlinearly on global
(integrated over all space) quantities.
Size consistency in the usual DFT sense (see also refs 55 and

56, for a critical review) can be recovered if the interpolation is
done locally along the adiabatic connection.32 A local version of
eq 2 for the xc energy is given by

∫ ∫ρ ρ λ ρ= λE wr r r[ ] d ( ) d [ ]( )xc
0

1

(29)

It is important to note that a choice of wλ(r) is not unique, as
we can add to it any quantity that integrates to zero when
multiplied by ρ(r) and still get the same Exc[ρ]. For this reason,
it is very important to do the interpolation within the same
definition or the same “gauge” of the energy density for all the
ingredients used (e.g., at λ = 0 and λ = ∞). A physically sound
and commonly used “gauge” of the energy density is the one
given in terms of the xc hole potential:32,57,58

∫ρ =
′

| − ′|
′λ

λ

w
h

r
r r

r r
r[ ]( )

1
2

( , )
dxc

(30)

where hxc
λ (r,r′) is the xc hole obtained from the wave function

Ψλ[ρ] of eq 2.
At λ = 0, this energy density corresponds to the usual

exchange-hole potential, w0(r) = ϵx(r), while for λ→ ∞ we
have32

∑=
| − |

−∞
=

w vr
r f r
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1
2

1
( )

1
2

( )
i

N

i2
H

(31)

where vH(r) is the Hartree potential. Notice that the SCE
formalism yields, correctly, an energy density that decays at
infinity like −(1/(2|r|)) (in the gauge of the xc hole potential),
and a functional derivative (xc potential) with the correct decay
−(1/|r|).
In Figure 5, we show the SCE energy density w∞(r) in the

“gauge” of eq 30 at R = 1.4 and R = 8.0 along the internuclear
axis (h = 0), together with the w0(r) and w1(r) curves. The SCE
energy density w∞(r) of eq 31 has been calculated from the
comotion function described in section 4.3, while w0(r) and
w1(r) were taken from ref 32. All three quantities w0(r), w1(r),
and w∞(r) correspond to the full-CI density obtained from the
GAMESS-US package,42 within the aug-cc-pVTZ basis set of
Dunning.43 As expected, near the equilibrium (R = 1.4) the
physical energy is much closer to w0(r) than w∞(r). On the
other hand, for the stretched (R = 8.0) molecule, the physical
energy density is much closer to w∞(r). For this reason, the
inclusion of the exact w∞[ρ](r) (or of a good model for it19,32)
as an ingredient to build local interpolations along the adiabatic
connection is a very promising approach for the treatment of
strong correlation in DFT.

From Figure 5 we see that the SCE energy density displays a
cusp at the bond midpoint. This is a feature related to the fact
that when |r| → 0 the comotion function goes to infinity.
Depending on how fast |f(r)| tends to infinity, the cusp might
arise or not. Similarly, a cusp might or might not appear also in
the SCE potential vSCE(r) at the origin. The ansatz of eq 18 can
capture a cusp in the potential with a very peaked Gaussian,
similarly to how Gaussian basis sets fit the nuclear cusp of a
Slater orbital.

7. THE CONSTANT OF LEVY AND ZAHARIEV IN THE
STRONG-INTERACTION LIMIT OF DFT

For finite systems in chemistry, one usually defines the arbitrary
constant that appears in the Hamiltonian by making the
external potential go to zero as the distance from the center of
nuclear charge goes to infinity. When turning to the KS system,
this choice defines unequivocally the Hartree exchange-
correlation energy EHxc[ρ], whose functional derivative within
the set of number conserving densities is, in turn, defined
modulo a constant (see refs 59 and 60, for a complete
discussion). Usually, the constant in the functional derivative is
also chosen such that the Hartree-exchange-correlation
potential goes to zero at large distances from the center of
charge.
It has often been argued that it is easier to model the xc

potential rather than the xc functional, since more is known

Figure 5. Energy densities in the gauge of the xc hole of eq 30 for H2
at R = 1.40 and R = 8.0 at different λ values: 0, 1, and ∞.
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about the exact properties of the former.61,62 In general,
however, a given approximation for the xc potential is not
necessarily a functional derivative, which means that the xc
energy corresponding to it is not well-defined, although
different solutions have been proposed.61,62 Levy and
Zahariev27 showed that the physical ground state energy
becomes equal to the sum of the occupied KS orbital energies if
the corresponding Hxc potential is shifted by a nontrivial
constant C[ρ] (with respect to the usual choice mentioned
above) equal to

∫
∫

ρ
ρ ρ ρ

ρ
=

−
C

E v r r r

r r
[ ]

[ ] [ ]( ) ( ) d

( ) d
Hxc Hxc

(32)

They suggested that it might be easier to model the shifted
potential vH̅xc[ρ](r) ≡ vHxc[ρ](r) +C[ρ] rather than the usual xc
potential that goes to zero asymptotically. Although in general
the model potential would not be a functional derivative, the
corresponding physical energy could be obtained without the
need of a line integral,61,62 as it would be always given by the
sum of the occupied KS eigenvalues.
The Kantorovich potential by eqs 11 and 12 is exactly the

strong-interaction limit of the shifted potential defined by Levy
and Zahariev. To see this, consider that the maximizing
potential u(r) in eq 12 yields the functional Vee

SCE[ρ] by
integration

∫ρ ρ=V u r r r[ ] ( ) ( ) dee
SCE

(33)

When Vee
SCE[ρ] is used to approximate the Hxc functional, its

functional derivative, which can be obtained exactly from eq 7,
is defined, as usual, up to an arbitrary constant. If we choose to
use the Kantorovich potential u(r) as functional derivative, the
constant is fixed by the linear constraints in the dual
Kantorovich problem of eq 12. In this case, the KS SCE
equations read

ϕ ϕ ϕ ϕ− ∇ + + = ϵu vr r r r r r
1
2

( ) ( ) ( ) ( ) ( ) ( )i i i i i
2

ext (34)

By multiplying from the left both sides of eq 34 by ϕi*(r),
integrating over r and summing all the equations for the
occupied orbtials, we obtain

∫ ∫ ∑ρ ρ ρ+ + = ϵT u vr r r r r r[ ] ( ) ( ) d ( ) ( ) d
i

is ext
(35)

By virtue of eq 33, we see that the left-hand side of eq 35 gives
the physical energy in the approximation Vee

SCE[ρ] ≈ EHxc[ρ].
The constant C[ρ] has also a very clear physical meaning in

the strong-interaction limit. Consider the Hamiltonian of the
standard DFT adiabatic connection

λ̂ = ̂ + ̂ + ̂λ λH T V Vee (36)

where the multiplicative one-body potential V̂λ = ∑iv
λ(ri)

enforces the density constraint in eq 1. When λ → ∞, we
have8,9

λ̂ = ̂ + ̂λ→∞H V V( )ee SCE (37)

The corresponding classical Hamiltonian V̂ee + V̂SCE defines a
classical electrostatic problem with a degenerate minimum,
given by the subspace parametrized by the comotion functions.
The total energy of the system in this case is exactly NC[ρ],

where N is the number of electrons. In other words, in the λ →
∞ limit, we have

ρ
ρ ρ

λ
= ⟨Ψ | ̂ |Ψ ⟩

λ

λ λ λ

→∞
C

N
H

[ ]
1

lim
[ ] [ ]

(38)

so that C[ρ] is the total electrostatic energy per electron. Since
the minimum of the Hamiltonian of eq 37 is degenerate, we
only need one configuration of the 3D subspace parametrized
by the comotion functions (only one value of r) to compute
C[ρ]. For example, in the N = 2 case considered here we can
choose to compute C[ρ] from the configuration corresponding
to r = 0. In this case, the second electron in the system is at
infinity, so that there is no electron−electron contribution and
we obtain C[ρ] = (1/2)vSCE(0).
From the scaling properties of the exact Hartree-exchange-

correlation (Hxc) energy functional,63,64 we have that if we
define ργ(r) = γ3ρ(γ r), with γ > 0, then10,49 EHxc[ργ→0] →
Vee
SCE[ργ]. Equation 38 then provides a constraint for building

approximations to C[ρ].

8. CONCLUSIONS AND PERSPECTIVES
In this work we have used the Kantorovich dual formulation to
compute the hydrogen molecule dissociation curve using the
strong interaction limit of DFT as an approximation for the
exchange-correlation functional (KS SCE approach). Since the
KS SCE energies are, as expected,15,17 way too low around
equilibrium, we have explored corrections beyond the KS SCE
method. It turned out that a simple LDA correction to KS SCE
performs very poorly, yielding energies that are higher than
Hartree−Fock ones. It is for that reason that we considered two
different nonlocal corrections to KS SCE. The inclusion of such
corrections improves the overall accuracy of KS SCE, although
further improvements are still needed. The main ingredient of
the corrections is the comotion functions computed from the
SCE potential, using an exact relation between the potential
and the optimal map. The challenge is to generalize KS SCE
and its corrections to larger molecular systems. For diatomics,
we can still try to optimize the algorithm of the method
presented in this work, but for larger systems we will probably
need to approximate the SCE part, although recent promising
work from the optimal transport community could yield
eventually efficient SCE algorithms.37,38

Another way to use the SCE information in the construction
of approximate functionals is by interpolating locally between
the weak and the strong-interaction limits of DFT. We touched
upon this approach and computed the SCE energy densities for
H2 in the “gauge” of the electrostatic potential of the xc hole.
Previously, the SCE energy densities in this “gauge” were
available only for spherically symmetric systems. This
information, combined with exact or approximate local
quantities from the weak-interaction limit, will allow us to
test different interpolation models locally. A crucial, missing
ingredient for this approach is a local indicator of correlation (in
the right “gauge”), to determine the slope around λ = 0 of the
local adiabatic connection curve. This local indicator will be
first obtained in an exact way using the Legendre transform
algorithms44 and then approximated. This study is the object of
our ongoing work.
We also showed that in the Kantorovich dual formulation,

the constant in the Kohn−Sham potential recently introduced
by Levy and Zahariev27 arises very naturally, with a physically
transparent meaning.
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■ APPENDIX

A. Analytical Expressions for ∫ ρ(r) vSCE(r) dr
With the parametrizations of vSCE(r) of eq 18 and of ρ(r) of eq
19, the integral ∫ ρ(r) vSCE(r) dr becomes

∫ ∫ ∫

∑ ∑
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J. Chem. Phys. 2013, 139, 164109.
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