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Abstract

While in principle exact, Kohn–Sham density functional theory—the work-

horse of computational chemistry—must rely on approximations for the

exchange–correlation functional. Despite staggering successes, present-day

approximations still struggle when the effects of electron–electron correla-

tion play a prominent role. The limit in which the electronic Coulomb repul-

sion completely dominates the exchange–correlation functional offers a

well-defined mathematical framework that provides insight for new approxi-

mations able to deal with strong correlation. In particular, the mathematical

structure of this limit, which is now well-established thanks to its

reformulation as an optimal transport problem, points to the use of very dif-

ferent ingredients (or features) with respect to the traditional ones used in

present approximations. We focus on strategies to use these new ingredients

to build approximations for computational chemistry and highlight future

promising directions.
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1 | INTRODUCTION

Owing to its high accuracy-to-cost ratio, Kohn–Sham density functional theory (KS DFT) is presently the primary build-
ing block of the successes of quantum chemistry in disciplines that stretch from biochemistry to materials science.1–6

DFT calculations consume a significant fraction of the world's supercomputing power7 and tens of thousands of scien-
tific papers report DFT calculations with the number ever growing.2 KS DFT is in principle exact, but in practice, it
requires approximations to one piece of the total energy, the so-called exchange–correlation (XC) functional, which
encodes the quantum, fermionic, and Coulombic nature of electrons.

The construction of modern XC approximations draws from different approaches. Some of them are based on forms
fulfilling some known exact constraints,1,8 some have been fitted to large databases,3,5 and the most recent XC approxi-
mations are machine learned.9–11 Regardless of these differences in their design, nearly all current DFT approximations
are constructed from the same ingredients (or features) that form the “Jacob's ladder.”12,13

Despite the progress,10 state-of-the-art XC approximations have been greatly successful mainly in describing only
weak and moderate electronic correlations.3,4 The inability of state-of-the-art DFT to capture strong correlations ham-
pers its reliability and predictive power.1,2,6,14 Over the last two decades, the strongly interacting limit of DFT (SIL)15–19

has been explored and a rigorous theory has been established. This theory reveals mathematical objects that are very
different from the ingredients that are used for building standard XC approximations (semilocal quantities and KS
orbitals forming the Jacob's ladder). By offering building blocks for XC functionals tailored to describe strong correla-
tions, the SIL has a potential to solve the long-standing problem of DFT simulations of strong electronic correlations.

Here we give a summary of the development of the SIL in different contexts: the development of the theory itself, its
practical realization, and the development of approximations drawing from it. We discuss paths for using this limit in
different ways to solve the problem of strong correlations within DFT and discuss how it has enabled the construction
of a range of quantities that can guide the further development of DFT. We also give an overview of how the SIL has
motivated the development of methods that go beyond DFT, such as wavefunction methods delivering highly accurate
noncovalent interactions.20

2 | EXCHANGE–CORRELATION FUNCTIONAL IN DFT

Using the Levy–Lieb (LL) constrained-search formalism21,22 the ground state energy and density of a many-electron sys-
tem in an external potential v :ℝd !ℝ can be obtained as

EGS v½ � ¼ min
ρ

F ρ½ �þ
Z

v rð Þρ rð Þdr
� �

, ð1Þ

where ρ rð Þ is the one-electron density, and where F[ρ] is the λ = 1 (physical) value of the generalized universal LL
functional for arbitrary coupling constant λ,

Fλ ρ½ � ¼ min
Ψ 7! ρ

⟨ΨjbTþλbVeejΨ⟩, ð2Þ

with bT the kinetic energy operator and bVee the electron–electron (Coulomb) repulsion operator. The physical dimension
d is 3 but, as we will see in the following, it is also interesting to consider models when d = 1 or d = 2.

In Equation (2), the minimization is performed over all antisymmetric wavefunctions that integrate to ρ rð Þ, whereas
the minimization in Equation (1) is performed over all N-representable densities.21 In the Kohn–Sham formalism, the
functional F[ρ] = F λ=1[ρ] is partitioned as

F ρ½ � ¼Ts ρ½ �þU ρ½ �þExc ρ½ �, ð3Þ

where Ts ρ½ � ¼Fλ¼0 ρ½ � is the KS non-interacting kinetic energy, U[ρ] is the Hartree (mean-field) energy, and Exc[ρ] is the
exchange–correlation energy. The adiabatic connection (AC) formula for the XC functional reads23,24
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Exc ρ½ � ¼
Z 1

0
W λ ρ½ �dλ, ð4Þ

where Wλ[ρ] is the global AC integrand:

W λ ρ½ � ¼ ⟨Ψλ ρ½ �jbVeejΨλ ρ½ �⟩�U ρ½ �, ð5Þ

and Ψλ[ρ] is the minimizing wavefunction in Equation (2). We can also write Wλ[ρ] as

W λ ρ½ � ¼
Z

wλ rð Þρ rð Þdr, ð6Þ

where wλ rð Þ is a λ-dependent XC energy density (per particle) that is not uniquely defined. In the present work, we
adhere to the definition in terms of the electrostatic potential of the XC hole (conventional DFT gauge),25–28

wλ rð Þ¼ 1
2

Z ∞

0

hλxc r, uð Þ
u

4πu2du, ð7Þ

where hλxc r, uð Þ is the spherical average (over directions of u¼ r0 �r) of the XC hole around a given position r. The XC
hole, in turn, is determined by the pair density associated with the wavefunction Ψλ[ρ].

3 | STRONGLY INTERACTING LIMIT OF DFT

In this section, we briefly review the physical ideas behind the strongly interacting limit of DFT. For a mathematically
more rigorous and comprehensive overview, we recommend referring to Friesecke et al.19

The strongly interacting limit of DFT corresponds to the situation in which the electron–electron repulsion domi-
nates in F λ[ρ] of Equation (2), namely15,16

lim
λ!∞

1
λ
Fλ ρ½ � ¼V SCE

ee ρ½ �, ð8Þ

where V SCE
ee ρ½ � is the strictly correlated electrons (SCE) functional defined by the minimization of the electronic repulsion

over wavefunctions Ψ with density ρ rð Þ:

VSCE
ee ρ½ � ¼ min

Ψ 7! ρ
⟨ΨjbVeejΨ⟩: ð9Þ

The limit in Equation (8) has been established rigorously,29–31 with the convergence of the “energies,” that is, the value
of the functional F λ[ρ] divided by λ tends to VSCE

ee ρ½ �, and qualitative convergence of the wave-functions squared. More
precisely, for any Ψλ minimizing (2), the spatial part of the N-body density obtained by summing over the spin degrees
of freedom, PN

λ ¼P
spins Ψλj j2, in the λ!∞ limit, converges (after extraction of a subsequence) to a limiting N-body

probability distribution PN
∞ ρ½ � and convergence occurs in the sense that

lim
λ!þ∞

Z
ℝdN

g
X

s1,…, sN
Ψλj j2 ¼

Z
ℝdN

gdPN
∞, ð10Þ

for all bounded continuous observables g :ℝdN !ℝ (mathematically: weak convergence of probability distributions).
The limit state is concentrated on lower-dimensional sets, as discussed later.
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The probability distribution PN
∞ ρ½ � minimizes the following alternative definition of the SCE functional

V SCE
ee ρ½ � ¼ min

PN 7! ρ

X
i< j

1
rij
PN r1,…, rNð Þdr1…drN , ð11Þ

where rij ¼ ri�rj
�� ��. Here the minimum is over all symmetric N-body probability distributions with one-body density ρ.

Interestingly, unlike its absolute value squared, the wavefunction Ψλ itself does not converge to any meaningful limit.
Since PN

∞ ρ½ � minimizes only the electronic repulsion, one can think of it as a natural analog of the Kohn–Sham non-
interacting state Ψ0[ρ], which minimizes the kinetic energy functional only. However, while with Ψ0[ρ] we can evaluate
the expectation value of bVee, we cannot evaluate the kinetic energy expectation value with PN

∞ ρ½ �. This can be done only
through the next leading term of F λ!∞[ρ], which we discuss later.

3.1 | Links to the XC functional

The functional V SCE
ee ρ½ � also corresponds to a well-defined limit of the XC functional. In fact, the λ!∞ limit of the AC

integrand of Equation (5) is equal to

W∞ ρ½ � ¼VSCE
ee ρ½ ��U ρ½ �: ð12Þ

Moreover, there is a well-known relationship32,33 between scaling the coupling strength λ and performing uniform coor-
dinate scaling on the density, ργ rð Þ¼ γ3ρ γrð Þ (with γ>0), which implies that the exact XC functional tends to W∞[ρ] in
the low-density (γ! 0) limit. The SCE limit is thus complementary to exchange, which yields the high-density limit
(γ!∞) of Exc[ρ],

lim
γ!∞

Exc ργ
� �
γ

¼Ex ρ½ �, lim
γ!0

Exc ργ
� �
γ

¼W∞ ρ½ �: ð13Þ

3.2 | The SCE state

As a candidate for the wave-function squared PN
∞ ρ½ �, Seidl and co-workers15,16 proposed to restrict the minimization in

(11) over singular distributions having the form:

PN
SCE ¼

1
N!

X
P

Z
ds

ρ sð Þ
N

δ r1� fP 1ð Þ sð Þ� ��
�δ r2� fP 2ð Þ sð Þ� ���� ��δ rN � fP Nð Þ sð Þ� �

,

ð14Þ

where f 1,…, fN are the so-called co-motion functions, with f 1 rð Þ¼ r, P is a permutation of {1,…N}, and δ r� f i rð Þð Þ
denotes the delta function of r (alias Dirac measure) centered at f i rð Þ¼ f i ρ½ �;rð Þ. The singular distributions (14) are con-
centrated on the d-dimensional set Ω0 �ℝdN ,

Ω0 ¼ r1 ¼ r, r2 ¼ f 2 rð Þ,…, rN ¼ f N rð Þf g, ð15Þ

and its permutations. Intuitively speaking, such an N-body density describes a state in which the position of one of the
electrons, say r�ℝd, can be freely chosen according to the density ρ, but this then uniquely fixes the position of all the
other electrons through the co-motion maps f i rð Þ, that is, r2 ¼ f 2 rð Þ,…, rN ¼ f N rð Þ. Thus states of form (14) are called
strictly correlated states, or SCE states for short. In other words, if a reference electron is at r, the other electrons in the

4 of 17 VUCKOVIC ET AL.

 17590884, 2023, 2, D
ow

nloaded from
 https://w

ires.onlinelibrary.w
iley.com

/doi/10.1002/w
cm

s.1634 by Staats- U
nd, W

iley O
nline L

ibrary on [10/10/2023]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense



SCE state can be found nowhere else, but at the f i rð Þ positions. Besides yielding minimal electronic repulsion, the
co-motion functions need to satisfy group properties,15,16,34 accounting for the indistinguishability of electrons, and the
push forward condition, ρ f i rð Þð Þdf i rð Þ¼ ρ rð Þdr, which ensures that the density constraint is met.16,34

Constructing the co-motion functions is not simple, except in some special cases such as one-dimensional and
spherically symmetric systems.15,16 In those cases, the co-motion maps are obtained from constrained integrals of the
density. This is illustrated in Figure 1, which shows a simple one-dimensional example of the optimal solution for (9),
which has the form (14), with strictly correlated positions separated by “chunks” of density that integrate into integers.
We should stress that this solution has been rigorously proven to be exact for one-dimensional systems,34 which means
that in this case the exact XC functional in the low-density limit is entirely determined by these constrained integrals
rather than by any of the traditional Jacob's ladder ingredients.

The SCE potential is defined as the functional derivative of the SCE functional V SCE
ee ρ½ � with respect to the density,

vSCE rð Þ¼ δVSCE
ee ρ½ �=δρ rð Þ, with the convention that vSCE rð Þ tends to zero as j r j!∞ for finite systems. Given an SCE

state of Equation (14), the SCE functional and potential can be simply written in terms of the co-motion functions35–37:

VSCE
ee ρ½ � ¼

Z
ρ rð Þ
2

XN
i¼2

1
r� f i rð Þj jdr ð16Þ

rvSCE rð Þ¼�
XN
i¼2

r� f i rð Þ
r� f i rð Þj j3 : ð17Þ

Equation (17) has a simple physical interpretation: vSCE rð Þ is the one-body potential that corresponds to the net force
exerted on an electron at position r by the other N� 1 electrons.

Is the SCE state of Equation (14) actually always the trueminimizer of Equation (11)? It has been proven that this is truewhen
N= 2 in any dimension d ≥ 118,29 andwhen d= 1 for any number of electrons.34 In general, the SCE state of Equation (14) is not
guaranteed to yield the absolute minimum for the electronic repulsion for a given arbitrary density ρ rð Þ.38,39 This has been in-
depth analyzed for spherically symmetric densities and it has been found that in the cases where the SCE solution is
not optimal, V SCE

ee ρ½ � of Equation (16) is still very close to the true minimum of Equation (11).39

3.3 | Other V SCE
ee ρ½ � formulations

In addition to the co-motion functions formulation (Equation (16)), there are other equivalent formulations for V SCE
ee ρ½ �

arising from mass transportation theory. The link between the SCE functional and mass transportation (or optimal

FIGURE 1 A pedagogical example: A sample of strictly correlated positions for a 1D density integrating to six electrons. A reference

electron is placed at x = �2 (black point) and the SCE position of the other electron is determined by fi(x) and are represented by other

colors. Notice that the shaded area between two adjacent SCE positions integrates to 1 and this is what defines fi(x) for 1D densities. Inset is

showing the co-motion functions for the given density.
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transport) theory was found, independently, by Buttazzo et al.18 and by Cotar et al.29 From the optimal transport view-
point, the SCE functional defines a multimarginal problem, in which all the marginals are the same, so that the SCE
mass-transportation problem corresponds to a reorganization of the “mass pieces” within the same density. From opti-
mal transport theory, the dual Kantorovich formulation for VSCE

ee ρ½ � can be also deduced,18

V SCE
ee ρ½ � ¼ max

u

Z
u rð Þρ rð Þdr :

XN
i¼1

u rið Þ≤
X
i< j

1
j ri� rj j

( )
, ð18Þ

defining the Kantorovich potential u rð Þ as the maximizer of Equation (18). The same Equation (18) can be also
reformulated40 as a nested optimization:

V SCE
ee ρ½ � ¼ max vSCE

Z
vSCE rð Þρ rð Þdrþg vSCE½ �

� �
, ð19Þ

where g vSCE½ � is the minimum of the classical potential energy,

Epot
SCE r1,…, rNð Þ¼

X
i< j

1
j ri�rj j�

XN
i¼1

vSCE rið Þ, ð20Þ

over r1,…, rN . In Equations (17) and (20), vSCE rð Þ is defined up to a constant, which by convention is set such that
vSCE rð Þ tends to 0 as j r j!∞ for finite systems. On the other hand, the constant in u rð Þ is fixed by the linear constraints
of Equation (18). For finite systems, this constant (equal to u rð Þ� vSCE rð Þ) is exactly the strong-coupling limit of the
Levy–Zahariev shift.41,42

3.4 | Next leading term

More information about the exact LL functional at low density can be gained by studying the next leading term in
Equation (8). Under the assumption that the minimizer in (9) is of the SCE type (14), the classical potential energy
(20) is minimum on the manifold Ω0 parametrized by the co-motion functions. The conjecture is then that the next
leading term is given by zero-point oscillations in the directions perpendicular to the SCE manifold17

Fλ ρ½ � �
λ!∞

λVSCE
ee ρ½ �þ

ffiffiffi
λ

p
FZPE ρ½ �, ð21Þ

where ZPE stands for zero-point electronic energies, and where,

FZPE ρ½ � ¼ 1
2

Z
ρ rð Þ
N

Tr
ffiffiffiffiffiffiffiffiffiffi
H rð Þ

p
 �
dr, ð22Þ

and H rð Þ is the hessian matrix composed of the second order derivatives of the SCE potential energy of Equation (20)
evaluated at r1 ¼ r, r2 ¼ f 2 rð Þ,… (i.e., on the manifold Ω0 parametrized by the co-motion functions). The intuition that
this next term should be given by zero-point oscillations around the manifold parametrized by the co-motion functions
appeared for the first time in Seidl's seminal work,15 and was later formalized, with calculations for small atoms (He to
Ne) in Gori-Giorgi et al.17 A rigorous proof in the one-dimensional case for any N has been provided recently.43

3.5 | The spin state

Besides the expansion of Equation (21) in terms of powers of λ, which is semiclassical in nature, it is conjectured17,44

that the effect of the spin state will enter at large-λ through orders e�
ffiffi
λ

p
, which corresponds to the overlap of Gaussians

centered in different co-motion functions. This conjecture has been confirmed numerically for N = 2 electrons in 1D.45
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3.6 | Numerical realization of the SCE functional

The SCE functional cannot at the moment be accurately and efficiently computed for general 3D densities and large N.
But accurate numerical methods are available for small N or special situations, and novel methods aimed at large N are
under development. In particular, the very recent genetic column generation method46 appears in test examples to scale
favorably with system size.

In Table 1, we give an overview of the proposed algorithms for computing the SCE functional and potential and
refer to the book chapter19 for a more detailed review. From Table 1, we can see that for general 3D densities, numeri-
cal solutions were reported only for up to 10 electrons (the first method is limited to radial densities, whereas for the
last method 3D tests are not yet available). This indicates again the level of complexity and ultra nonlocality of the SCE
functional.

In fact, in the worst-case scenario, the computational complexity of simple algorithms scales exponentially with the
number N of electrons47 and computing the SCE functional may be NP-hard.46,48,49 In the discrete setting, where the
single particle density ρ is supported on ℓ points, Equation (11) is equivalent to a linear programming problem with ℓN
constraints and ℓ

N variables.
Despite these limitations in solving the SCE problem exactly, rather accurate approximations, retaining some of the

SCE nonlocality, have been recently proposed and they will be detailed in the next section.

4 | APPROXIMATIONS TO THE SCE FUNCTIONAL

Existing approximations of the SCE functional are summarized in Table 2. They include the point-charge plus contin-
uum (PC) model of Seidl and coworkers,61 which has both a local density approximation (LDA) version and a gradient
expansion version (GEA), and the recent harmonium PC (hPC) model, which is a generalized gradient approximation
(GGA).62 Notice that the PC model uses as LDA the idea of a spherical neutralizing cell around each electron, and its
prefactor differs slightly from the exact SCE limit for a uniform density, given by the Madelung energy of the bcc Wig-
ner crystal.66 The nonlocal radius functional (NLR) and the shell model retain some of the SCE nonlocality64,65 through
the integrals of the spherically averaged density, which is defined as:

eρ r,uð Þ¼ 1
4π

Z
ρ rþuð ÞdΩu: ð23Þ

NLR approximates the XC hole in the strong coupling limit whose depth (nonlocal radius), u1 rð Þ, is implicitly defined
through the following integral, inspired by the exact SCE functional for 1D systems,

4π
Z u1 rð Þ

0
u2eρ r,uð Þdu¼ 1: ð24Þ

TABLE 1 An overview of proposed SCE algorithms

Algorithm References Nmax

SGS approach is based on co-motion functions (radial densities only) 50, see also 16 and 51 100

Linear programming applied to the N-body formulation (11) 39 and 52 3

Multi-marginal Sinkhorn algorithm 53–57 5

Algorithms based on the Kantorovich formulation (19) 40 and 42 6

Algorithm based on representability constraints for the pair density 58 10

Langevin dynamics with moment constraints 59 and 60 (To be assessed)

Genetic column generation (3D tests not yet available) 46 30

Note: The third column shows Nmax , which indicates up to how many electrons a given algorithm was applied to. This is not meant to be a direct comparison
of methods as the reported results differ in the fineness of discretization and the accuracy achieved. Also, only the second, fourth and last algorithms are free of

additional approximations beyond discretization.

VUCKOVIC ET AL. 7 of 17

 17590884, 2023, 2, D
ow

nloaded from
 https://w

ires.onlinelibrary.w
iley.com

/doi/10.1002/w
cm

s.1634 by Staats- U
nd, W

iley O
nline L

ibrary on [10/10/2023]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense



Once u1 rð Þ is computed, the energy density from the electrostatic potential of the NLR XC hole is computed, which in
turn, defines W∞[ρ] within NLR. The shell model is built upon NLR and makes it exact for the SCE limit of the uniform
electron gas.65

In Figure 2, we explore the accuracy of different SCE approximations for energy densities (see Equation (26) below).
From this figure, we can see that the shell model is the most accurate approximation locally. The PC-GEA model is the
best performer globally here, and generally, it gives a rather accurate W∞[ρ]. However, the functional derivative of the
PC-GEA diverges in the exponentially decaying density tails,62,67,68 making self-consistent KS calculations impossible.

TABLE 2 Approximate w∞ rð Þ energy densities yielding W∞[ρ] from: W∞ ρ½ � ¼ R
ρ rð Þw∞ rð Þdr

Approximation w∞ rð Þ form References

PC-LDA � 9
10

4π
3

� �1=3
ρ rð Þ1=3 61

PC-GEA wPC-LDA
∞ rð Þþ921=3π

175 ρ rð Þ1=3s rð Þ2 61

GGA (hPC) wPC-LDA
∞ rð Þ1þas rð Þ2

1þbs rð Þ2
62

NLR �2π
R u1 rð Þ
0 eρ r,uð Þudu 64

Shell model �2π
R us rð Þ
0 eρ r,uð Þuduþ2π

R uc rð Þ
us rð Þ eρ r,uð Þudu 65

Note: PC stands for point-charge plus continuum (PC) model,61 LDA stands for the local density approximation, GEA for the gradient expansion

approximation, GGA for the generalized gradient approximation, and hPC62 stands for the harmonium PC based on a GGA form,63 whose parameters a and b

are trained on the SCE energetics for the harmonium atom (for their numerical values see Ref. 62). The reduced density gradient, s, is given by
s rð Þ¼ rρ rð Þj j= 2 3π2ð Þ1=3ρ rð Þ4=3


 �
. The nonlocal radius functional (NLR)64 approximates the strong coupling limit of the XC hole, whose depth is given by

Equation (24) and is calculated from the integrals over the spherically averaged density (Equation (23)). The shell model65 adds a positive shell to the NLR

hole, and the radii of the negative and positive shell, us rð Þ and uc rð Þ, respectively, are obtained at each r from the uniform electron gas constraint and the
normalization constraint on the underlying XC hole. The approximate w∞ rð Þ from PC-LDA, NLR, and shell model are in the gauge of Equation (7) and
thereby directly approximate w∞ rð Þ of Equation (26).

FIGURE 2 Upper panel: Difference between the exact (SCE) and approximate strong coupling limit energy density for the beryllium

atom, δw∞ rð Þ¼w∞ rð Þ�wmodel
∞ rð Þ, as a function of the distance from the nucleus, r/a.u. The inset in the upper panel is focusing on the error

of the shell and NLR model for larger r. Lower panel: The quantity from the upper panel multiplied by the density and the spherical volume

element
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This problem is solved by turning to GGA's.62,68 In particular, the very recently proposed hPC functional62 preserves
the accuracy of W∞[ρ] from PC-GEA, while making self-consistent KS calculations possible.

In addition to the approximations for W∞[ρ], the approximations for the next leading term, FZPE ρ½ � (Equations (21)
and (22)) have been also proposed. The most used61,69–71 approximation to FZPE ρ½ � is the one from the PC-GEA model,61

which reads as:

FZPE ρ½ �≈FZPE
PC ρ½ � ¼ 2

Z
Cρ rð Þ3=2þDρ

rρ rð Þj j2
ρ rð Þ7=6

,

" #
ð25Þ

with C = 1.535 derived from the PC model,61 and D typically set to 2.8957 � 10�2 by ensuring that FZPE
PC ρ½ � gives exact

FZPE ρ½ � for the helium atom.17 In addition to PC-GEA, the very recent hPC model also provides a GGA form approxi-
mating FZPE ρ½ �.62

5 | FROM SCE TO PRACTICAL METHODS

The bare SCE functional is not directly applicable in chemistry as it over-correlates electrons. If we take the dissociation
curve of H2 as an example,42,52 we can see that the SCE, unlike nearly all available XC approximations, dissociates the
H2 correctly without artificially breaking any symmetries, but predicts far too low energies around equilibrium and too
short bond lengths. For this reason, SCE is not directly applicable in chemistry. Instead one should devise smarter strat-
egies for incorporating the SCE in an approximate XC functional. The challenge is then to use the SCE information to
equip new functionals with the ability to capture strong electronic correlations, while maintaining the accuracy of the
standard DFT for weakly and moderately correlated systems. These strategies and challenges that come along the way
are discussed in the following sections.

5.1 | Functionals via global interpolations between weak and strong coupling limit
of DFT

XC approximations of different classes have been constructed from models to the global AC integrand
(Equation (4)).72–76 A possible way to avoid bias toward the weakly correlated regime present in nearly all XC
approximations is to also include the information from the strongly interacting limit of Wλ[ρ]. Such an approach,
called the interaction strength interpolation (ISI), where Wλ[ρ] is obtained from an interpolation between its
weakly and strongly interacting limits, has been proposed by Seidl and coworkers.77 Since the ISI approach has
been proposed, different interpolation forms with different input ingredients have been tested.17,26,61,65,78–81

These approaches typically use the exact information from the weakly interacting limit [exact exchange and the
correlation energy from the second-order G�orling–Levy perturbation theory (GL2)82]. Except for some proof-of-
principle calculations,26,83,84 the ISI scheme uses the approximate ingredients from the large-λ limit (W∞[ρ] and
the next leading term described by FZPE ρ½ �) and these are typically modeled at a semilocal level. In some cases,65,80

the ISI forms have been tested in tandem with the W∞[ρ] approximations that retain some of the SCE nonlocality (see
Section 4).

A potential problem of the ISI functionals is the lack of size consistency, which, however, can be easily corrected for
interaction energies when there are no degeneracies.85 The ISI functionals have been tested on several chemical data
sets and systems and they perform reasonably well for interaction energies (energy differences).69,71,85 When applied in
the post-SCF fashion, the ISI approach seems more promising when used in tandem with Hartree–Fock (HF) than with
semilocal Kohn–Sham orbitals. This finding has initiated the study of the strongly interacting limit in the Hartree–Fock
theory70,86 and the successes of approaches based on it will be briefly described in Section 5.5. Recently, the correlation
potential from the ISI approach, which is needed for self-consistent ISI calculations to obtain the density and KS
orbitals, has been computed.67 It has been shown that it is rather accurate for a set of small atoms and diatomic mole-
cules (see Figure 3, where we show that the ISI correlation potential provides a substantial improvement over that from
GL2 for the neon atom).67 The computed ISI correlation potentials have enabled fully self-consistent ISI calculations
that have been recently reported in Śmiga et al.62
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5.2 | Functionals via local interpolations between weak and strong coupling limit
of DFT

In addition to building models for the XC energy via global interpolations between the strongly and weakly interacting
limits of Wλ[ρ], one can also perform the interpolation locally (i.e., in each point of space).26,81 This can be done by
interpolating between the weakly and strongly interacting limits of wλ ρ½ �;rð Þ, which is the λ-dependent XC energy den-
sity of Equation (7). The main advantage of local interpolations26,81,84 over their global counterparts is that the former
are size-consistent by construction if the interpolation ingredients are size-consistent.87,88 Thereby, local interpolations,
unlike their global counterparts, do not require size-consistency correction.28

As mentioned earlier, there is no unique definition for wλ ρ½ �;rð Þ. Vuckovic et al.28 explored the suitability of differ-
ent definitions of the λ-dependent energy densities and it has been found that the energy densities definition of
Equation (7) (electrostatic potential of the XC hole) is the best choice so far in this context. Within this definition,
wλ ρ½ �;rð Þ reduces to the exact exchange energy density when λ = 0, whereas in the λ!∞ (within the SCE formulation),
it is defined in terms of the co-motion functions35:

w∞ ρ½ �;rð Þ¼ 1
2

XN
i¼2

1
r� f i rð Þj j�

1
2
vH rð Þ, ð26Þ

where vH rð Þ is the Hartree potential. In addition to these two, a closed form expression for the local initial slope for
wλ ρ½ �;rð Þ has been derived in Vuckovic et al.26 from second-order perturbation theory.

The accuracy of different local interpolation forms has been tested with both exact26,84 and approximate26,65,80 ingre-
dients. Relative to the global interpolations, local interpolations typically give improved results for tested small chemi-
cal systems,26 but usually do not fix the failures of global interpolations.81 Nevertheless, the accuracy of XC functionals
based on the local interpolation is still underexplored. This local interpolation framework can also be used to improve
the latest XC approximations, such as the deep learned local hybrids,10 especially when it comes to the treatment of
strong electronic correlations.

5.3 | Fully nonlocal multiple radii functional—inspired by the exact SCE form

The mathematical form of the SCE functional has inspired new fully nonlocal approximations, called the multiple radii
functional (MRF).27,89,90 MRF approximates the XC energy densities of Equation (7) at arbitrary λ in the following way:

wMRF
λ rð Þ¼ 1

2

XN
i¼2

1

Rλ
i ρ½ �;rð Þ�

1
2
vH rð Þ: ð27Þ

FIGURE 3 Correlation potentials vc as a function of the distance from the nucleus (r) for the neon atom. The accurate correlation

potential has been obtained from quantum Monte Carlo (QMC). All the data have been taken from Fabiano et al.67
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Equation (27) can be thought of as the generalization of Equation (26), where starting from a reference electron at r,
the remaining electrons are assigned effective radii or distances from r. The radii are then constructed from the inte-
grals over the spherically averaged density and are implicitly defined by

4π
Z Rλ

i rð Þ

0
u2eρ r,uð Þdu¼ i�1þσλi rð Þ, ð28Þ

where σλi rð Þ is the so-called fluctuation function. The construction of the XC functional within MRF essentially reduces
to building σλi rð Þ. So far, the main focus has been on building approximations for the λ = 1 case, and already very sim-
ple forms for σλ¼1

i rð Þ yield very accurate atomic wMRF
λ rð Þ at the physical regime for atoms, while also accurately captur-

ing the physics of stretched bonds. This shows that the forms inspired by the SCE can work for the physical regime if
properly re-scaled. Furthermore, despite its full nonlocality, the cost of MRF is O(N 3) within seminumerical schemes.91

By construction, MRF has very appealing properties: (1) it gives XC energies in the gauge of Equation (7) making it
highly suitable to be used in the local interpolations described in Section 5.2; (2) these energy densities have the correct
asymptotic behavior; (3) MRF captures the physics of bond breaking; (4) it is fully nonlocal so it can better describe the
physics of strong electronic correlations that the usual semilocal DFT functionals; (5) its form is universal and does not
change as dimensionality/interactions between particle changes as demonstrated in Gould and Vuckovic.90 All these
features of MRF and its flexibility make it very promising for building the next-generation of DFT approximations.
There are ongoing efforts to transform these appealing features into robust XC functionals by developing improved
MRF forms and efficiently implementing the MRF package into standard quantum-chemical codes.

5.4 | Other applications of SCE: Lower bounds to XC energies and correlation indicators

Besides being used to build XC approximations, the SCE approach has also proven very useful in understanding general
features of the exact XC functional and the nature of electronic correlations. For example, the SCE limit is directly con-
nected to the Lieb–Oxford (LO) inequality,92,93 a key exact property used in the construction of XC approximations.8,94

The LO inequality limits the value of the XC energy by bounding from below the AC integrand of Equation (5):

W λ ρ½ �≥ �CLO

Z
ρ4=3 rð Þdr, ð29Þ

where the optimal CLO is rigorously known to be between 1.4442 and 1.5765.66,95,96 More generally, �CLO
R
ρ4=3 rð Þdr

bounds from below the indirect energy (electron–electron repulsion minus the Hartree energy) of any correctly normal-
ized and antisymmetric Ψ[ρ]. Letting Ψ[ρ] be Ψλ[ρ], we obtain Equation (29). Since Wλ[ρ] monotonically decreases with
λ, W∞[ρ] will be the smallest value for the l.h.s. of Equation (29). Thus, finding lower bounds for the optimal constant
CLO is equivalent to searching for densities ρ that maximize the ratio between W∞[ρ] and �R

ρ4=3 rð Þdr,51,97 a procedure
that has been applied to both the optimal CLO for the general case and to the one for a specific number of electrons
N.28,51,97,98 An approach to tighten the lower bound to correlation energies for a given density has been also proposed
by combining the adiabatic connection interpolation described in Section 5.1 and the SCE energies.81

In addition to provide tightened lower bounds for the XC energies, the SCE has also been used to define correlation
indicators that quantify the ratio between dynamical and static correlation in a given system.81 This idea has been also
generalized to local indicators, enabling to visualize the interplay of dynamical and static correlation at different points
in space.81

5.5 | Going beyond DFT—Large-λ limits in the Møller–Plesset adiabatic connection

The DFT AC introduced in Section 2, whose large λ limit is the focus of this article, defines the correlation energy in
KS DFT. In a more traditional quantum-chemical sense, the correlation energy is defined as the difference between
the true and Hartree–Fock (HF) energy. An exact expression for this correlation energy is given by the Møller–
Plesset adiabatic connection (MPAC),70 which connects the HF and physical state and has the Møller–Plesset
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FIGURE 4 Two different adiabatic connections, linking the physical (λ = 1) system to either the KS or the Hartree–Fock determinant

(λ = 0). Left: The density-fixed adiabatic connection of KS DFT (see Section 2). The Hamiltonian bHDFT
λ corresponds to Equation (2), with the

one-body potential vλ rð Þ enforcing the constraint Ψλ 7! ρ, where ρ is the density of the physical system. The correlation part of the adiabatic

connection integrand WDFT
c,λ is equal to Wλ[ρ] of Equation (5) minus Wλ=0[ρ] = Ex[ρ]. Small and large-λ expansions for WDFT

c,λ are also shown.

Right: The adiabatic connection that has the Møller–Plesset (MP) series as a small perturbation expansion, considered in Section 5.5. The

Hamiltonian bHHF
λ contains bJ ρHF½ � and bK ϕHF

i

� 
� �
, which are the standard Hartree and exchange HF operators, respectively. The λ-dependent

Ψ minimizing bHHF
λ has a density that changes with λ: At λ = 0 is equal to the HF density, while at λ = 1 is equal to the physical density. The

expectation WHF
c,λ is the AC integrand defining the correlation energy in HF theory. Small and large-λ expansions for WHF

c,λ are also shown.

The operator bV ext is the external (nuclear) potential

FIGURE 5 Dissociation curves of the pyridine (top) and argon dimers (bottom) obtained from MP2, SPL2, MPACF-1, B3LYP-D3, and

B2PLYP with CCSD(T) (black line) as a reference
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perturbation series as weak-interaction expansion. This AC is summarized and compared with the one of KS DFT
used so far in this work in Figure 4. It has been recently shown that the large-λ limit of the MP AC is determined by
functionals of the HF density.70,86 Inequalities between the large-λ leading terms of the two AC's have been also
established.70,86

The MP AC theory has been used to construct a predictor for the accuracy of MP2 for noncovalent interactions.99

Methods that are based on the interpolation between the small and large λ limits of the MP AC have been also devel-
oped.20 They are analogous to the ISI methods outlined in Section 5.1, which are used in the DFT context. It has been
shown that these interpolation methods for the MP AC give very accurate results for noncovalent interactions.20 We
illustrate this in Figure 5, where we compare reference [CCSD(T)] to approximate dissociation curves from these inter-
polation approximations for the pyridine and argone dimers. The curves labeled SPL2 and MPACF-1 correspond to two
new global interpolation forms20 constructed by adding more flexibility and empirical parameters to the existing inter-
polation forms used in DFT17,77 to capture the known exact features of the MP AC. For both of these noncovalently
bound dimers, and for many other cases,20 SPL2 and MPACF-1 show an excellent performance without using disper-
sion corrections. In general, they substantially improve over MP2 for noncovalent interactions, and are either on par
with—or also improve—dispersion corrected (double) hybrids.20

6 | CONCLUSIONS AND OUTLOOK

Here we have reviewed the most important topics that the strongly interacting limit of DFT brings into focus. We have
analyzed the development of different aspects of the underlying rigorous theory connecting DFT and optimal transport,
and discussed how the SIL formulation influenced the development of different methods in DFT and beyond. Although
this limit does not describe the physical regime, its mathematical structure contains essential elements pointing towards
the real physics happening in molecular systems with strong correlations, whose description is one of the key unsolved
problems in DFT. Thus, in the years and decades to come it will be very interesting to see how much the SIL ideas, for-
mulations, and ensuing practical methods will be used to solve the strong correlation problem and to build the next
generation of DFT methods. In particular, the new ingredients appearing in this limit can be used as new features to
machine learn the XC functional.9–11
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