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ABSTRACT: Capturing strong correlation effects remains a key
challenge for the development of improved exchange−correlation
(XC) functionals in density functional theory. The recently
proposed multiple radii functional (MRF) [J. Phys. Chem. Lett.
2017, 8, 2799; J. Chem. Theory Comput. 2019, 15, 3580] was
designed to capture strong correlation effects seamlessly, as its
mathematical structure draws from that of the exact XC functional
in the limit of infinite correlations. The MRF functional provides a
framework for building approximations along the density-fixed
adiabatic connection, delivers accurate XC energy densities in the
standard DFT gauge (same as that of the exact exchange energy
density), and is free of one-electron self-interaction errors. To facilitate the development of XC functionals based on the MRF, we
examine the behavior of the MRF functional when applied to uniform and scaled densities and consider how it can be made exact for
the uniform electron gas. These theoretical insights are then used to build improved forms for the f luctuation function, an object that
defines XC energy densities within the MRF framework. We also show how the MRF fluctuation function for physical correlation
can be easily readjusted to accurately capture the XC functional in the limit of infinite correlations, demonstrating the versatility of
MRF for building approximations for different correlation regimes. We describe the implementation of MRF using densities
expanded on Gaussian basis sets, which improves the efficiency of previous grid-based MRF implementations.

1. INTRODUCTION
A vast majority of electronic structure calculations across
disciplines ranging from biology to materials science are done by
density functional theory (DFT).1−4 Within the Kohn−Sham
DFT (KS DFT), the only, but crucial, piece that has to be
approximated is the exchange−correlation (XC) functional.
Despite the tremendous successes of DFT, the description of
strong correlation electronic effects remains the major challenge
in the development of new XC approximations.5−9 One can
argue that the insufficient accuracy and not uncommon
qualitative failures of the standard DFT for strong correla-
tions1,6,7 can be traced back to the limited number of building
blocks that standard DFT uses for XC approximations.8,9 These
building blocks (or features) form the so-called “Jacob’s ladder”
as formulated by Perdew.10,11 The complexity and cost of the
features increase as we climb up Jacob’s ladder, where at the
bottom rung we find the density; then the density gradient and
its Laplacian (or kinetic energy density) in themiddle rungs; and
the KS occupied and unoccupied orbitals in the top rungs.10,11

Nearly all currently available XC approximations are built
from these Jacob’s ladder features, including the very recent XC
models obtained from machine learning (ML).8,12 This includes
recent DM21 functional designed to reduce the errors of
approximate XC functionals for fractional spins and fractional
charges.13 Even though the DM21 development has made a
breakthrough in using ML to optimize XC approximations,

DM21 still suffers from deficiencies inherent to the limitations of
the Jacob’s ladder features it uses. For example, upon
dissociation of H2, DM21 gets the region around equilibrium
right (weak correlation) as well as the dissociation limit (strong
correlation) as it has been trained on its dissociation limit.13

However, describing homonuclear diatomics at intermediate
bond distances (e.g., about 3 Å for H2) can be even more
challenging than the dissociation limit due to the delicate
interplay between weak (dynamical) and strong (static)
correlation.14 For the intermediate distances, DM21 displays a
large unphysical bump in the H2 dissociation curve.13 This
deficiency of DM21 can be fixed by symmetry breaking or
fractional KS occupations, but the two approaches would also
fix, e.g., B3LYP’s H2 dissociation curves.15,16 The challenge is
thus to build an XC approximation capturing strong correlation
in the standard KS framework without artificial symmetry
breaking.
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A way forward in ML of XC approximations able to capture
different correlation regimes (fromweak to strong) is to use fully
nonlocal features (i.e., containing information about the
electronic density everywhere).8,9 Then the question arises:
what is the form of the fully nonlocal features that can be used?
While some very recent ML XC models attempted to make use
of different nonlocal features,17−21 the strongly interacting limit
(SIL) of DFT provides a natural and theoretically firm ground
for the development and utilization of the fully nonlocal
features.9 Specifically, the rigorous mathematical treatment of
the SIL reveals that the building blocks of the exact XC
functionals arising from the SIL are very different from the
standard Jacob’s ladder features.9,22−26 Instead of semilocal
quantities and KS orbitals that form the Jacob’s ladder, in the
SIL, we see specific integrals of the density encoding fully
nonlocal information. For general (3D) geometries, computing
the exact SIL is prohibitively costly,9 which in turn inspired the
construction of functionals (with the N3 scaling) that either
approximate the SIL or are inspired by the SIL features.9 For
example, the nonlocal radius27 and shell model28 have been
proposed to approximate the SIL and retain some of its
nonlocality. On the other hand, the recently proposed fully
nonlocal multiple radii functional (MRF)29−31 draws from the
main structural motifs of the SIL but approximates electronic
energy at the physical regime instead of the strongly interacting
one.

The main building block for MRF is the following integral

[ ] =N u x x xr r( ; , ) 4 ( , ) d
u

e
0

2
(1)

over the spherically averaged density

= +ur r u( , )
1

4
( ) d u (2)

where ρ(r) is the usual (one-electron) density. Alternatively, we
can writeNe([ρ]; r, u) directly in terms of ρ via the Heaviside Θ
function:Ne(u; r) = ∫ Θ(|r − r′| − u)ρ(r′) dr′, where Θ(x) = {1
∀ x ≥ 0, 0 ∀ x < 0} is the Heaviside step function. By encoding
fully nonlocal information through Ne([ρ]; r, u), MRF has a
range of advantages missed by standard functional. It is free of
one-electron self-interaction error, captures electronic correla-
tion arising upon bonds stretching in a seamless manner, and
provides correlation energy densities within the standard DFT
definition (i.e., gauge) that are fully compatible with the exact
exchange energy densities.29−31 These good features of MRF
arise already by its construction and thus provide a different
starting point for building a new class of XC functional
approximations that overcome the drawbacks of current ones.
This makes the use of MRF features highly appealing for ML of
XC approximations (or alternatively using ML to improve
MRF). However, certain challenges have to be addressed before
we can get to that stage. First, due to its radically different
mathematical structure, one cannot follow standard routes used
for improving semilocal functionals to refine MRF. For example,
incorporation of the exact constraints is a standard “Perdew-
school” route for refining XC functional approximations.5,32

Making a semilocal approximation exact for the uniform
electron gas (UEG) is trivial for semilocal approximations,32,33

but a different mathematical structure of MRF makes the
imposition of this and other constraints more involved (see e.g.,
refs 34−37 for in-depth discussions on the relevance of the UEG
constraint for both solids and molecules). Second, despite its
affordable scaling (N3), the full nonlocality of MRF and its

underlying features require more implementation effort to make
them readily available in quantum-chemical codes.

In the present paper, we overcome these two crucial
challenges for the use of MRF features or MRF itself for the
development of (ML) fully nonlocal functionals and making
DFT accurate for strongly correlated systems. First, we consider
how well the existingMRF forms satisfy certain exact constraints
(e.g., when applied to scaled and uniform densities), and how
these constraints can be incorporated intothem. Then we use
these insights to improve MRF by refining and analyzing the so-
called f luctuation function, an object that defines the XC
functional within MRF. Then we focus on the practical aspects,
develop the improved MRF integral package, and implement
MRF into a development version of the TURBOMOLE
program.38 The key idea is to obtain a flexible implementation
that will easily accommodate improvements through refined
forms for the fluctuation function. The main computational
bottleneck forMRF is the calculation of the density integral of eq
1. We overcome this issue by using the analytical integrals
pertaining to eq 1 over the standard Gaussian basis functions. In
addition to the MRF itself, we also implement the MRF reverse
machinery,30 which we use to make the exchange part of the
MRF deliver exact exchange energy densities, and then we use
this as the starting point for building the MRF correlation
functional.

The paper is organized as follows: The relevant theoretical
background is given in Section 2. The behavior of MRF for
uniformly scaled densities and the UEG are then studied in
Sections 3 and 4, respectively. These insights are then used in
Section 5 to analyze how MRF can be improved. The details for
the implementation of MRF are given in Section 6, and
discussion and numerical examples are given in Section 7, while
Section 8 is devoted to conclusions and outlooks. Hartree
atomic units are used throughout this paper unless otherwise
specified.

2. BACKGROUND
2.1. Exact Exchange−Correlation Functional. For a

given ρ(r), an exact density-fixed adiabatic connection (AC)
expression for the XC energy is given by39−41

[ ] = [ ]E W dXC
0

1

(3)

where Wλ[ρ] is the global AC integrand that we can write in
terms of the local quantities as29,41−43

[ ] =W w r r r( ) ( ) d (4)

where wλ(r) is the XC energy density arising from the Ψλ[ρ]
fermionic wavefunction that integrates to ρ(r) and minimizes
the sum of the kinetic energy T̂ and the electron−electron
repulsion Vee scaled by the non-negative coupling constant λ. To
link wλ(r) with Ψλ[ρ], we define first the spherically averaged
pair density, P2

λ(r, u), which is obtained from Ψλ[ρ] through

= × | +

|

P u
N N

r r r u r

r r r

( , )
( 1)

4
( , ( ) , ,

..., ) d d ... dN N Nu

2
...

1 2 3 3

2
3

N1

(5)

In terms of P2
λ(r, u), we define the spherically averaged XC hole
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=h u
P u

ur
r
r

r( , )
( , )
( )

( , )xc
2

(6)

Finally, wλ(r) reads as42,44,45

=w
h u

u
u ur

r
( )

1
2

( , )
4 d

0

xc 2
(7)

An important note is that the XC energy density is not uniquely
defined,29,41−43 but we stick here to its definition given by eq 7,
that of the electrostatic potential of the XC hole.
2.2. Multiple-Radii Functional (MRF). In this section, the

cornerstones of the MRF model are briefly summarized to
provide a basic understanding of the challenges in its
implementation and its further improvement. MRF approx-
imates wλ(r) as29−31

=
[ ]=

w
R

vr
r

r( )
1
2

1
( ; )

1
2

( )
i

N

i

MRF

2
H

(8)

where Riλ([ρ]; r) are the radii or effective distances between a
reference electron at r and the remaining N − 1 electrons.
Riλ([ρ]; r) are defined in terms of the inverse of the electron
number function of eq 1

[ ] = +R N ir r r( ; ) ( , 1 ( ))i ie
1 (9)

where σiλ is the f luctuation function. Combining eqs 4, 8, and 9,
we obtain

[ ] =
+

[ ]
=

W
N i

U

r r
r r

1
2

d ( )
1

( , 1 ( ))i

N

i

MRF

2 e
1

(10)

whereU[ρ] = 1/2∫ ρ(r)vH(r) dr is the Hartree energy. By eq 10,
MRF reduces approximating Exc[ρ] by finding σiλ. The
underlying idea is that it is much easier to approximate σλ(r)
than the corresponding energy densities, as the former is
bounded in between −1 and 1, changes little locally in a given
system and across systems,29−31 and can be represented through
very simple mathematical forms. For example, setting σiλ=1 = 0
already gives accurate atomic energy densities at the full
coupling strength. In refs 29−31, the following form for σiλ=1 has
been considered

== r( )
1
2

ei
bS r1 ( )i

2

(11)

where b = 5 has been chosen to optimize electronic repulsion
energy for He, and where Si(r)

= =
=

S
N x

x
a ar

r
r r r( )

( , )
4 ( ) ( , ( ))i

x N i
i i

r

e

( , 1)

2

e
1 (12)

gives the information on the radial spherically averaged density
of the i-th neighboring electron at their initial distances (radii)
from the reference electron

=a N ir r( ) ( , 1)i e
1 (13)

In this way, σiλ(r) can push away or bring the i-th electron closer
to the reference electron from these initial ai distances.

The σ of eq 12 already gives accurate atomic energy densities
and captures the physics of bond breaking. Furthermore, even
though it is built for 3D systems, the same form gives

comparable accuracy for reduced dimensionalities.31 The
MRF’s P2,λ([ρ]; r, u) that gives rise to eq 8 is given by

[ ] =
=

P u
u

u Rr r r( ; , )
1

4
( ) ( ( ))

i

N

i2,
MRF

2
2 (14)

where δ is the Dirac delta function. As P2,λ
MRF([ρ]; r, u) is given

by the sum of δ functions, it is not meant to approximate the
exact P2,λ([ρ]; r, u) at finite λ values. Instead, it only serves as the
auxiliary object that delivers wλ

MRF(r), since this is the object
that MRF aims to accurately approximate. In other words,
P2,λ

MRF([ρ]; r, u) is not an approximation of the exact P2,λ([ρ]; r,
u) at finite λ, but the electrostatic potential of the former is an
approximation to that of the latter.
2.3. ReverseMRFMachinery. In special cases, (N = 2 any λ

and λ → ∞ for any N), there is a one-to-one correspondence
between σiλ(r) andwλ(r). For these special cases, one can use the
exact wλ(r) (available for small systems), translate it to “exact”
σiλ(r), and then use those to guide the improvement of MRF. In
general, there is no one-to-one correspondence between σiλ(r)
and wλ(r). This is circumvented within the so-called the reversed
MRF machinery (rm-MRF),30 where one approximates σiλ(r) by

r( ), which is the constant, i-averaged fluctuation function.
With this approximation, we get a one-to-one correspondence
between r( ) and wλ(r)

+ =
+=

N i
v w

r r
r r

( , 1 ( ))
1

( ) 2 ( )i

N

2
e

1

H (15)

Equation 15 enables us to reverse engineer r( ) by using wλ(r)
input energy density, and this is what specifically we refer here to
rm-MRF. This already enables us to take the exact exchange
energy density wλ=0(r), translate it to = r( )0 , and then use the
latter as the starting point for building the correlation part of the
MRF functional on the top of the exact exchange. In Section 6,
we also give details for the implementation of rm-MRF.

3. MRF SCALING RELATIONS
Consider the usual uniform coordinate scaling of the density46,47

=r r( ) ( )3
(16)

where γ is a non-negative number. A range of DFT quantities
scale linearly with γ

[ ] = [ ]X X (17)

This holds for the Hartree energyU[ργ],Wλ[ργ] integrand of eq
3 in the λ → 0 (exact exchange) and λ → ∞ limit.46,47 The
scaling ofWλ[ργ] in between the two limits is non-trivial, and it is
known that EXC[ρ] and Wλ=1[ρ] do not scale linearly with γ in
general.46

To examine the behavior of MRF under uniform density
scaling, we first check the scaling of its ingredients. By eqs 2 and
16, the spherically averaged density scales as

=u ur r( , ) ( , )3
(18)

Thus, Ne of eq 1 obeys

[ ] = [ ]N u N ur r( ; , ) ( ; , )e e (19)

In what follows, we show that if the fluctuation function obeys

[ ] = [ ]r r( ; ) ( ; )i i (20)
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the resulting Wλ
MRF[ργ] must scale linearly with γ (i.e., satisfies

eq 17). To deduce the scaling of the radii resulting from the
fluctuation functions obeying eq 20, we use the implicit
definition of the radii following from eq 9

[ ] = +N R ir r r( ; , ( )) 1 ( )i ie (21)

Combining eqs 20 and 21, we obtain

[ ] [ ] = [ ] [ ]N R N Rr r r r( ; , ( ; )) ( ; , ( ; ))i ie e (22)

Inserting now eq 19 into the l.h.s. of eq 22, we obtain

[ ] [ ] = [ ] [ ]N R N Rr r r r( ; , ( ; )) ( ; , ( ; ))i ie e

(23)

which, in turn, dictates the following scaling of the radii

[ ] = [ ]R Rr r( ; )
1

( ; )i i
(24)

These radii, arising from the fluctuation function satisfying the
scaling relation of eq 20, dictate the following scaling of
Wλ

MRF[ρ] of eq 10

[ ] =
[ ]

[ ]

=
[ ]

[ ]

=

=

W
R

U

R
U

r r
r

r r
r

1
2

d ( )
1

( ; )

1
2

d ( )
( ; )

i

N

i

i

N

i

MRF

2

3

2
(25)

which reduces to

[ ] = [ ]W WMRF MRF
(26)

As said, it is known that the exact Wλ=1[ρ] does not, in general,
obey eq 17. The same is true for the scaling ofWλ=1

MRF[ρ] within
the original fluctuation function for λ = 1 (eq 11).

4. MRF FOR THE UNIFORM ELECTRON GAS
In ref 29, the very basic properties of the MRF functional for the
UEG as a paradigm for extended systems have been studied. In
this section, we give a full derivation of the MRF functional for
the UEG, numerically examine the properties of theMRF for the
UEG, and consider how the functional can be made exact for the
UEG.

For the UEG with the density = ( )r4
3 s

3 1
, eq 8 becomes

=
[ ]=

w r
R

u u( )
1
2

1
( )

1
2

4 d
i

N

i

MRF
s

2 0 (27)

To take the thermodynamic limit, we consider a sphere of
volume = L4

3
3 containing N electrons. Since ρ = N/Ω, the

radius of the sphere will be L = rsN1/3. Expressing ρ and L in
terms of rs andN, the second term on the r.h.s. of eq 27 becomes

=u u Ld
r

L

r
3

2 0
3

4
2

s
3

s
3 . Since L = rsN1/3, eq 27 becomes

Ä

Ç

ÅÅÅÅÅÅÅÅÅÅÅÅ
i
k
jjjjjj

y
{
zzzzzz

É

Ö

ÑÑÑÑÑÑÑÑÑÑÑÑ
=

[ ]=
w r

R r
N( ) lim

1
2

1
( )

3
2N

i

N

i

MRF
s

2 s

2/3

(28)

For the UEG, Ne(r, u) is just: Ne(u) = u3/rs3, and its inverse is
Ne

−1(i− 1) = rs(i− 1)1/3. Taking this into account and inserting
eq 9 into eq 28, we finally obtain

Ä

Ç

ÅÅÅÅÅÅÅÅÅÅÅÅ
i
k
jjjjjj

y
{
zzzzzz

É

Ö

ÑÑÑÑÑÑÑÑÑÑÑÑ
=

+=
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r i r
N( ) lim

1
2

1
( 1 ( ))

3
2N

i

N

i

MRF
s

s 2 s
1/3

2/3

(29)

Splitting the summation in eq 29 into two terms, one from i = 2
to some imax and the other from imax + 1 to N, we can write

i

k

jjjjjjjj
Ä

Ç

ÅÅÅÅÅÅÅÅÅÅÅÅÅ

i

k
jjjjjjj
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{
zzzzzzz
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s
MRF

s 2 s
1/3

1 s
1/3

2/3

max

max

(30)

To evaluate eq 30 for the UEG with the fluctuation function of
eq 11, we need Si(rs), which for the UEG takes the very simple
form

=S
i

r
3

( 1)
i

2/3

s (31)

For sufficiently large imax and for σiλ(rs) vanishing at largeN (e.g.,
eq 11), we can write eq 30 as

i

k

jjjjjjjj
Ä
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which can be re-written by using a closed form for the second
term

i
k
jjjjjj

i
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jjj y

{
zzz

y
{
zzzzzz=

+
+

=
w r

r i r
H i( )

1
2

1
( 1 ( ))

1
3

,
i

i

i
s

s 2 s
1/3 max

max

(33)

where H(x, y) is the analytical continuation of the Hurwitz Zeta
function,48 which is conveniently implemented in, e.g., Wolfram
Mathematica,49 where it can be easily accessed through
HurwitzZeta[x, y].

In practice, small imax values are needed to achieve
convergence. The second term in eq 33 is a resummation,
whereas the first term requires an explicit summation and is thus
more expensive. Physically, this can be seen as if the reference
electron interacts only with a set of imax − 1 neighbors, and the
remaining ones are only implicitly treated. We can check the
convergence of MRF for the UEG w.r.t. imax by using the
fluctuation function of eq 11 for λ = 1. The convergence of
wλ=1

MRF(rs) w.r.t. imax at zero spin polarization is shown in the left
panel of Figure 1. We can see that for small rs only few electrons
are needed to reach the convergence (for rs = 10, imax = 5 is more
than enough, and for rs = 25, imax = 10 is more than enough). But,
for rs = 100, the convergence is achieved at imax ∼ 100.
Mathematically, this is because at small rs values imax quickly
becomes much larger than σi≥2, since when rs → 0, σi tends to 0
[eqs 11 and 31]. Physically, this is also an appealing feature of
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MRF, as larger imax values are needed to achieve the convergence
as correlation becomes stronger with the increase of rs. In other
words, a reference electron needs to “communicate” with more
and more neighbors to describe the physics of the UEG as long-
range fluctuations become more and more important as rs → ∞.

If a constant (i.e., i-averaged) =r r( ) ( )i s s is used (as in
rm-MRF presented in Section 2.3), then eq 29 takes the
following very simple form

i
k
jjj y

{
zzz= +w r

r
H( )

1
2

1
3

, 1MRF
s

s (34)

Equation 34 gives us a possibility to take the exact wλ(rs) and
reverse engineer r( )s . At λ = 0 and zero polarization, wλ=0(rs) =
ϵX(rs) ≈ −0.458/rs, yielding through eq 34

r( ) 0.0469179x
s (35)

for all rs values. We can also take the exact wλ=1(rs) and then
observe how the resulting r( )s varies with rs. The exact
wλ=1

UEG(rs) is obtained for the UEG from ϵxc through the
following scaling relation

==w r
r r

r r( )
1

( ( ))1 s
s s

s
2

xc s
(36)

and throughout this work we use the PW92 parametrization50

for ϵxc and assume zero polarization.
In the right panel of Figure 1, we show the resulting =1. We

can see that as rs → 0, =1 x , since wλ=1 reduces to ϵx. As rs
increases, the correlation between electrons becomes stronger
and =1 increases. The range of σ values for the UEG is in line
with the previous “exact” =1 plots for atoms and H2, where
negative σ was observed for the exchange regimes and was

around 0 for weak correlations.29−31 When correlation becomes
very strong, =1 approaches 1/2 (e.g., stretched H2). For the
UEG, when rs ≥ 19.3, wλ→∞(r) even exceeds 1/2 and slowly
tends to ∼0.8 as rs → ∞.

5. IMPROVED FLUCTUATION FUNCTIONS
5.1. Form of the New Fluctuation Function. In the

present work, we consider the following fluctuation function

= + +r r r r( ) ( ) ( ) ( )i i

r

x
L
c,

,NL
c,

( )i
c,

Ö́ÖÖÖÖÖÖÖÖÖÖÖÖÖÖÖÖÖÖÖÖ ÆÖÖÖÖÖÖÖÖÖÖÖÖÖÖÖÖÖÖÖÖÖ
(37)

where the first term is the exchange component and is constant
(i.e., i-independent), and the last two terms are the correlation
parts of the fluctuation function, where the L (local) term is a
constant w.r.t. i, while the NL (nonlocal) term depends on i. The

exchange r( )x term ensures that the MRF energy density
resulting from the fluctuation function of eq 37 reduces to the
exact exchange energy density when the correlation terms are
omitted. The L correlation term, r( )L

c, we will use to impose
additional exact constraints to the MRF functional (e.g., making
it deliver essentially exact energetics for the UEG). The idea is to
construct this term by using the standard (semi)local DFT
quantities (density, its gradient, etc.).

Note here that the MRF functional is by construction fully
nonlocal (eq 10), and thus its full nonlocality is still preserved
even if the L term is the only one used in the fluctuation function
of eq 37. Moreover, the L term in the fluctuation function also
does not change the gauge of the underlying MRF XC energy
densities, as eq 8 arising from the pair density of eq 14 ensures
that the gauge ofMRF XC energy densities is always that of eq 7.
The NL term in the correlation part of the fluctuation function is
the one that was already contained in the original MRF
fluctuation function for λ = 1 (eq 11) and enables us to add extra
nonlocal information through Si, which is given by eq 11 and can
be seen as “the density at the position of i-th neighbor multiplied
by the spherical volume element”. Thereby, the NL term
captures long-range correlations and is crucial to describe the
bond breaking as analyzed in ref 31. As done originally, we want
to keep the NL term decreasing with Si and keep it bounded
between 0 (Si → 0) and 1/2 (Si → ∞). Through Si, the NL term
of eq 37 encodes additional nonlocal information on long-range
electronic correlations but contains no local information (e.g.,
about the density, its gradients, etc., at the position of a reference
electron at r). We want to offset this by the L of eq 37, and as we
shall see later, this term will enable us to impose additional exact
constraints to the MRF functional. Now we consider the basic
principles for the construction of individual terms in eq 37 for
the λ = 1 and unpolarized case. The same principles would apply

for other λ values and other polarizations. In eq 37, the r( )x

term is obtained through rm-MRF from the exact wλ=0(r), the
exact exchange energy density, which is also used in local
hybrids. For the σi,NL

c,λ=1(r) term, we use the original form for the
fluctuation function at λ = 1 (eq 11)

= == br( )
1
2

e ; 5i
bS r

,NL
c, 1 ( )i

2

(38)

This form has the features that we want the NL term of eq 37 to
have: it decreases with Si and it ranges from 0 to 1/2. Originally,
such form has been used as the only term for the original
fluctuation function at λ = 1 (eq 11). Because of this and its

Figure 1. MRF for the UEG. Top panel: convergence of wλ=1
MRF(r) for

the unpolarized UEG obtained from eq 33 w.r.t. imax obtained from the
fluctuation function for λ = 1 of eq 11. Bottom panel: i-averaged

= r( )1
s obtained from eq 34 and exact wλ=1(rs) [eq 16; PW92

parametrization] at different rs values. The insets zoom in on the plots at
small and large rs values.

Journal of Chemical Theory and Computation pubs.acs.org/JCTC Article

https://doi.org/10.1021/acs.jctc.3c00437
J. Chem. Theory Comput. 2023, 19, 6172−6184

6176

https://pubs.acs.org/doi/10.1021/acs.jctc.3c00437?fig=fig1&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.jctc.3c00437?fig=fig1&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.jctc.3c00437?fig=fig1&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.jctc.3c00437?fig=fig1&ref=pdf
pubs.acs.org/JCTC?ref=pdf
https://doi.org/10.1021/acs.jctc.3c00437?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as


simplicity, it is likely that σi,NL
c,λ=1(r) of eq 38 is not optimal when

used with the other two terms in eq 37. However, instead of fully
optimizing MRF, we aim here to better understand how we can
further constrain it by using eq 37 and understand how each
term of the fluctuation function of eq 37 can improve different
aspects of MRF.

To complete the construction, we still need the L term of eq
37, = r( )L

c, 1 . Since we want it to primarily depend on the local
density, the UEG gives us a natural choice for its construction.
For this term, we cannot use = r( )1

s
x from the right panel

of Figure 1 since it was computed without the NL term, which
we will need to “subtract off” to make eq 37 highly accurate for
the UEG. This is what we will consider in the next section.
5.2. Making the New Fluctuation Function Exact for

the UEG. To make eq 37 highly accurate for the UEG, we begin

with the x term of eq 37, whose role is to reduce wλ=1
MRF(r) to

wλ=0(r) when the correlation terms are omitted. We computed
this object for the UEG in Section 4, and its value is given in eq
35 and it does not depend on rs. The NL term is given by eq 38,
and the L term remains the only one to be built for wλ=1

MRF(rs).
With the fluctuation function of eq 37, eq 30 becomes
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x
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s
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(39)

where x and σi,NL
c,λ=1(rs) are given by eqs 35 and 38, respectively.

In contrast to eq 33, which holds for the σi vanishing at large N,
the i-independent part of the fluctuation function in eq 39 is
absorbed by theH function since it survives theN→ ∞ limit. To
obtain r( )L

c,
s , we equate the r.h.s. of eq 38 to the exact wλ=1(rs)

[eq 36; PW92] and numerically solve the resulting equation for
r( )L

c,
s . We use imax = 5000, and this imax value is more than

sufficient for rs < 1000 to ensure the convergence of the L
c,

solutions. The resulting L
c, data are shown in Figure 2, and we

fit those to

i
k
jjjjj

y
{
zzzzz
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= +

+
+

= =r r

r r

r r
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(0.0071 0.0761)

ln 1
1

0.0212 0.135

L
c, 1

s UEG
c, 1

s

s s

s
2

s (40)

and we also plot the fit function in the same figure.
At small rs, where correlation vanishes, = r( )L

c, 1
s correctly

becomes 0. Note again that = r( )L
c, 1

s is made to work in tandem
only with the specific form for its NL counterpart given in eq 38.
In contrast, = r( )1

s shown in the right panel of Figure 1 is meant
to work on its own without the NL part. An interesting
difference between the = r( )1

s (right panel of Figure 1) and
= r( )L

c, 1
s (Figure 2) can be observed for large rs values. In the

former case (no NL counterpart in σ), the saturation is very slow

at large rs, whereas in the latter case (with NL counterpart), it is
much faster and already for rs values larger than ∼10, =

L
c, 1

changes very little. This shows that the ability of the NL part of σ
to capture the long-range correlations makes an easier job for its
L counterpart to capture the remaining physics.

To check the quality of the fit given in 40, we calculate the
resulting wλ=1

MRF(rs). The relative error of wλ=1
MRF(rs) vs the exact

wλ=1(rs) [eq 36; PW92] as a function of rs is shown in Figure 3.

For comparison, we also show the relative error of wλ=1
MRF(rs)

obtained with the original fluctuation function [eq 11]. Given
the simplicity of the model and the fact that it has not been
trained on the UEG, the relative error for the original MRF is
reasonably small (never larger than 25%). On the other hand,
the new fluctuation function [eq 37 with the NL part of eq 38
and the L part given by the fit of eq 40] yields wλ=1

MRF(rs), which is
highly accurate for the UEG as the error in the underlying
wλ=1

MRF(rs) never exceeds 0.5%. Furthermore, the relative error in
wλ=1

MRF(rs) within the original σλ=1 does not vanish as rs → 0 (as it
misses the x negative term of eq 35), whereas the new model
also fixes that. We observe some oscillations in the error in this
inset as rs increases, and these would have likely diminished at
small rs if we had constrained the fit to match the exact next
leading order for the UEG at the high-density limit.50,51 At the
same time, our fit for MRF yields the error that does not vanish
in the low-density (large rs limit) of UEG relative to the PW92
parameterization.52 Yet, the magnitude of the error is energeti-

Figure 2. Datapoints with L
c, of eq 39 delivering the PW92-

parametrized wλ=1 at different rs values. The plot also shows the fit of eq
40.

Figure 3. Relative error of wλ=1
MRF(rs) for the unpolarized UEG against

the PW92 reference. “Original σλ=1” denotes the MRF results obtained
with the original fluctuation function [eq 11]. “New σλ=1” denotes the
MRF results obtained with the new fluctuation function [eq 37 with the
NL part of eq 38 and the L part given by the fit of eq 40, and σx given by
eq 35].
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cally negligible, as the overall error of 0.5% is within the PW92
reference’s margin of error.51

5.3. More General Form for the Fluctuation Function
Constrained by the UEG Condition. As an example of σiλ(r)
at λ = 1 constrained by the UEG condition, we consider the
following form

= + += =

=
=

Fr r r r( ) ( )
1
2

e ( ) ( )i
bS r

r
r

1 x ( )

( )

UEG
c, 1

( )

i

i NL

2

,
c, 1 L

c, 1Ö́ÖÖÖÖÖÖÖÖÖÖ ÆÖÖÖÖÖÖÖÖÖÖÖ
Ö́ÖÖÖÖÖÖÖÖÖÖÖÖÖÖÖ ÆÖÖÖÖÖÖÖÖÖÖÖÖÖÖÖÖ

(41)

where σUEG
c,λ=1(r) at a given from ρ(r) by using the fit from eq 40,

and where F(r) for now we simply set to

=
+

F
s

r
r

( )
1

1 ( )2 (42)

where s(r) is the usual reduced density gradient
= | |s r r r( ) ( ) /(2(3 ) ( ) )2 1/3 4/3 . This choice of F(r) ensures

that at s = 0, the high accuracy of the new fluctuation function for
MRF is preserved for the UEG. In the rapidly varying limit (s →
∞), correlation vanishes, and so does our = r( )L

c, 1 term with
this choice for F(r). Nonnegativity of the sum of the correlation
terms in eq 41 ensures that wλ=1

MRF never lies above the exactwλ=0,
and this was not the case with the original MRF (eq 11).
5.4. Illustration:MRF XC EnergyDensities for theNeon

Atom at the Full Coupling Strength. Here we use the XC
energy density to understand the terms of the fluctuation
function of eq 41. The results with different options are shown in

Figure 4. In that figure, we show the correlation component of
wλ=1(r), defined as

= =w w wr r r( ) ( ) ( )c, 0 (43)

If only the first term of eq 41 is used, the result reduces to the
exactwλ,0(r) via rm-MRF (i.e.,wc,λ=1

MRF(r) = 0). If only the second
term of eq 41 is used, the original σiλ=1(r) is recovered (eq 11),
and the resulting wλ=1

MRF(r) is labeled as “MRF original”. This
second term of eq 41 is essentially zero for the neon atom as all
Si(r) values are large. Nonetheless, σ = 0 gives accurate Wλ=1

MRF

for atoms, as mentioned earlier. Now we consider two different
cases when all three terms of eq 41 are used. The first one with

F(r) = 1 (“MRF UEG”), and the other is with F(r) given by eq
42 (“MRF new”).

“MRF original” gets the shell structure of wc,λ=1
MRF(r) right but

overestimates its magnitude. As observed earlier, it becomes
unphysically positive in the intershell region of atoms.30 This
cannot be the case with the fluctuations functions of eq 41, as its
correlation part is always positive ensuring that: wc,λ=1

MRF(r) =
wλ=1

MRF(r) − wλ=0(r) ≤ 0. That is why the other two wc,λ=1
MRF(r) in

Figure 4 are negative everywhere since they are obtained from eq
41. While the magnitude of “MRF UEG” is reasonable, it misses
the shell structure of the exact wc,λ=1(r). “MRF new” is the most
accurate here and highlights the importance of using F(r) in eq
41 to improve MRF. Also, the s(r) quantity equips “MRF new”
to capture the shell structure in the underlying correlation
energy densities. This is further highlighted in Figure 5, where

we compare the underlying = r( )L
c, 1 with “exact” = r( )c, 1

obtained via rm-MRF from accurate wλ=1(r) (further technical
details are given in the caption of the figure). Note that such
comparison is meaningful only if the i-dependent term of eq 41
(NL) is negligibly small, as is the case for the neon atom. From
Figure 5, we can see that “MRF new” gives much more accurate

= r( )L
c, 1 than “MRF UEG”. The former also builds a peak in

= r( )L
c, 1 , which is necessary for the shell structure in the

corresponding energy density. Also, at larger r, where the density
becomes small, “MRFUEG” over-correlates electrons (too large
σ), while the F(r) part containing s(r) fixes this deficiency.

6. IMPLEMENTATION OF MRF
In this section, we outline the steps for the implementation of
the MRF with Gaussian basis set for a given density. We first
describe a refined scheme for the spherical average of two
Gaussian functions that we need for the spherically averaged
density ρ̃(r, u), an intermediate to the Ne([ρ]; r, u) integral,
which is the key building block of MRF (eq 1). Then we explain
our numerically robust scheme for computing the inverse of
Ne([ρ]; r, u), which we also need for the MRF evaluation (eq
10). Finally, we introduce the algorithm for the reverse MRF
machinery (Section 2.3), which, for example, enables us to
“translate” the exact exchange energy density to MRF’s
fluctuation function�a starting point for building MRF’s
correlation on the top of exact exchange.
6.1. Spherically Averaged Electron Density with

Hermite Gaussians. Here we greatly simplify the previous

Figure 4. Correlation part of the XC energy densities at λ = 1 from the
MRF functional with the fluctuation function of eq 41 with F = 1
(“MRF UEG”) and F given by eq 42 (“MRF new”). The fluctuation
function in “original MRF” is given by eq 11 [equal to only the second
term of eq 41.] The MRF functional has been evaluated on the CCSD/
aug-cc-pCVTZ densities, and the reference wc,λ=1(r) has been obtained
by using the same level of theory and is taken from refs 29 and 30. Inset
shows the errors in approximate wc,λ=1(r) multiplied by the density and
spherical volume element.

Figure 5. = r( )L
c, 1 of eq 41 with F = 1 (“MRFUEG”) and F given by eq

42 (“MRF new”) for the neon atom. Since the NL term of eq 41 is
essentially zero, we can compare shown = r( )L

c, 1 with the “exact”
= r( )c, 1 obtained via rm-MRF from eq 15. The computational details

are the same as those from Figure 4.
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evaluations28,53 of the spherically averaged (SA) density ρ̃(r, u)
within the Gaussian basis set by using Hermite-Gaussians as
intermediates. In the atomic orbital (AO) basis, the SA density
(eq 2) becomes

= + +u Dr r u r u( , ) ( ) ( ) d u
(44)

where Dμν is the density matrix.
In practice, each basis function consists of several primitive

Gaussians, with contraction coefficients dμa

= dr r( ) ( )
a

a a
(45)

For simplicity, we assume that all Gaussian basis functions
contain only one primitive function, as the summation over
primitives can be included in a straightforward way.

We separate the overlap between two primitive Cartesian
Gaussians with exponents a and b and the origins A and B as

=

=
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Introducing a Hermite Gaussian positioned at the center of
charge = +P a b

p
A B and the total exponent p = a + b
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each Cartesian component for the overlap between two
Gaussians may be expanded in terms of Hermite Gaussians
and Hermite-to-Cartesian coefficients Etij as follows

=
=

+
G Eij

t

i j

t
ij

t
0 (48)

Note that the recursion relations are available for the Etij
coefficients.54

Then the total overlap over two Gaussians with a total
azimuthal quantum number (i + j + k + l + m + n) can be
decomposed into a sum over Hermite Gaussians, which, in turn,
can be expressed as derivatives of an s-type Hermite Gaussian
(Λ000)
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Defining the spherical average over the s-type Hermite Gaussian
as follows

= +ur r u( , )
1

4
( ) d u000

SA
000 (51)

and inserting the above expression for the overlap into eq 44
yields
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Equation 52 suggests that the spherical averaging can be
performed before generating the pairs with higher azimuthal
quantum numbers through differentiation with respect to the
center of charge coordinates. Through the introduction of
Hermite Gaussians and the associated recursion scheme for the
Hermite-to-Cartesian coefficients, computation of the total
coefficients by multiplying derivatives of the s-type Hermite
Gaussians becomes much simpler in comparison to the previous
scheme for the evaluation of the spherically averaged
density.28,53

Finally, an expression for Λ000
SA (r, u) is obtained, considering

that the spherical average over two s-type Cartesian Gaussian
functions is given53

+ =G K pu
u

u
r u

1
4

( ) exp( )
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ab ab
ss 2

(53)

With the definitions of ω = 2|arA + brB| and the pre-exponential
factor = +( )K A Bexp ( )ab

ab
a b

2 , the spherical average of the
000-Hermite Gaussian is given by
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(54)

with ω now defined in terms of the center of charge coordinates
(ω = 2prP) and rP = |r − P|. To go from ρ̃(r, u) to Ne(r, u), we
need the integration of the s-type Hermite Gaussian over u,
which can be performed analytically

=u u u p xr4 ( , ) d ifn( , , )
x

0

2
000
SA

(55)

with the ifn function defined in ref 28.
In summary, eq 52 is the key equation for the simplified MRF

calculation, which then together with eqs 54 and 55, can be used
to compute the Ne(r, u) integral within a Gaussian basis set.
6.2. Implementation of an MRF with Variable

Fluctuation Function. The key MRF building blocks
described in the previous subsection and the MRF functional
itself are implemented in a development version of the
TURBOMOLE program.38 The MRF XC energy densities (eq
8) are calculated on the usual real-space grids for semilocal XC
functionals. At each grid point r, we calculate the Ne(r, u)
integral (the key MRF ingredient) and ρ̃(r, u) (needed for the
MRF’s fluctuation functions that employ Si(r) of eq 12). Both
Ne(r, u) and ρ̃(r, u) are precomputed for a range of u
interelectronic distances. Then the MRF energy density is
computed following a stepwise procedure:

1. Sample theNe(r, u) integral (eq 1) for a predefined range
of the interelectronic distances u. Note thatNe monotoni-
cally increases with u and approaches N (number of
electrons) at large u. We use 1000 grid points. The interval
[umin, umax] is adjusted at each r such that Ne(r, umax) ≤ N
− 0.0001. In this way, we cover only the necessary u
region and increase the overall accuracy of the approach.

2. Calculate the initial radii, ai(r), implicitly defined as:Ne(r,
ai(r)) = i− 1 (eq 13). They are calculating by determining
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the bracketing values um(r) and um+1(r) for each ai(r),
such that um(r) < ai(r) < um+1(r). Then ai(r) is calculated
from a straight-line interpolation between um(r) and
um+1(r) (see Figure 6 for an illustration). This
interpolation scheme is robust and avoids numerical
instabilities that may arise in nonlinear fits.

3. Determine the fluctuation function of interest, σi(r) for
each i and r, from the required building blocks. For
example, the fluctuation function of eq 11 is calculated
from ai(r) and the spherically averaged densities when u =
ai(r).

4. Compute the multiple radii [Ri(r) entering eq 8] via
straight line interpolations, relying on the initial sampling
of theNe(r, u) again. In this way, theNe(r, u) is calculated
twice (at most), once for ai(r), and then for Ri(r).

5. Calculate the MRF energy density (eq 8) from the radii
and the precomputed Hartree potential.

This workflow is also presented in the pseudocode in Figure
S2 in the Supporting Information.
6.3. Implementing the Reversed MRF Machinery. For

the rm-MRF, described in Section 2.3, an average fluctuation
function σ̃ has to be determined for a given input energy density
wλ(r) at each grid point. To achieve this, we have adopted an
approach similar to the calculation of the inverse electron
number function described in Subsection 6.2: at each grid point,
the energy density is calculated for a range of σ̃-values. The
correct values for a given energy density are again obtained from

a straight-line interpolation. In this fashion, we have obtained
r( )x from wx(r) = wλ=0(r), but in principle, any input energy

density (in the gauge of eq 7) can be used.

7. NUMERICAL EXAMPLES
In this section, we present data for different flavors of the MRF
obtained in a post-SCF fashion, i.e., we use orbitals and densities
obtained from a Hartree−Fock (HF) or KS-DFT calculation
with a standard functional and evaluate only the XC energy with
the MRF.
7.1. Energies for Atoms and Small Molecules. First, we

consider a set of small (closed-shell) molecules shown in Figure
7 and the simplest possible case of the constant fluctuation
function for MRF. We can see that a slightly negative fluctuation
function, σiλ=0(r) = −0.2, already gives reasonable results for the
λ = 0 case (total exchange energies) with an MAE of 0.11
hartree. This negative value of σ is in line with the previously
observed range of exchange σ for, e.g., helium isoelectronic
series30 and in line with a slightly negative σ we find here for the
UEG’s exchange (eq 35). At the same time, this constant σ is the
simplest case of the scale-invariable fluctuation function
required for exchange (eq 20). Given the simple computational
settings for the MRF calculations of Figure 7 (with a small basis
set and a simple fluctuation function), these results can be used
to rapidly validate newMRF codes (see also Table S1 for the raw
data). In what follows, we will shift the focus of this section from
the exchange to the λ = 1 case.

In Table 1, we show the computed XC integrand at the full
coupling strength (Wλ=1[ρ] of eq 4; physical electronic repulsion
energy minus the Hartree energy). All MRF values have been
obtained by using the MRF Gaussian basis solver described in
Section 6 and the Hartree−Fock (HF) density. The second
column shows the “MRF original” values, computed with the
originally proposed fluctuation function [eq 11; the magenta
curve in Figure 4]. The mean absolute error (MAE) of “MRF
original” (here evaluated on the HF density) is only marginally
different (0.01 hartree) from the previously computed29 “MRF
original” (evaluated on the CCSD density from the “grid-based”
MRF solver). The second column shows “MRF new” [the
fluctuation function given by eq 41 with F given by eq 42; the
orange curve in Figure 4]. We design “MRF new” to ensure that
its correlation energy densities are always negative, as this is not
the case with “MRF original”. Unfortunately, we can see from
Table 1 that “MRF new” worsens “MRF original” for Wλ=1[ρ]
with the MAE twice as large.

Figure 6. Large box: sampling of theNe(r, u) integral for r = 1.2 bohr in
the Be atom for various values of u. Magnified area: the initial radius of
the third electron ai is implicitly defined as Ne(r, a3) = 2 (eq 13) and
found via straight line interpolation between the two points closest to
Ne = 2.

Figure 7. Exact exchange Ex[ρ] =W0[ρ] evaluated at theHF/def2-SVP level vsMRF’sWλ[ρ] evaluated with the constant σ = −0.2 fluctuation function
for a set of small molecules taken from ref 55. The exchange energies and densities have been obtained at the HF/def2-SVP level, and MRF has been
obtained at the same densities. For raw data, see Table S1 in the Supporting Information, and for corresponding geometry files, see the Supporting
Information as well. All energy values are shown in Hartree units.
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To preserve the accuracy of “MRF original” for atoms but still
constrain the MRF correlation energy densities to always be
negative, we consider the following proof-of-principle opti-
mization of MRF with the following fluctuation function

= +
+

=

=

d
s

r r( ) ( )
1

ei
d r

r

1 x ( )

( )L
c, 1

Ö́ÖÖÖÖÖÖÖÖÖÖÖÖÖÖ ÆÖÖÖÖÖÖÖÖÖÖÖÖÖÖÖ
(56)

In Figure 8, we observe how the MAE in the resulting MRF’s
Wλ=1[ρ] (for atoms/ions of Table 1) varies w.r.t. the d

parameter. The lowest MAE is obtained at d ∼ 0.26. With this
choice of the fluctuation function, we restore the accuracy of
“MRF original” for atoms while constraining its correlation
energy densities to always be negative as in “MRF original”.
Equation 56 gives a starting point for theMRF optimization, and
a more sophisticated version of this form will be explored in the
future. Similarly, for a set of molecules considered in Figure 7, we
find that the MAE of MRF with the σ of eq 56 for the electron
repulsion energies (λ = 1 case) is also about 0.15 hartree vs the
CCSD reference, with the d minimum slightly shifted toward
smaller d values (see Figure S1 and Table S2 in the Supporting
Information for further details).

7.2. rm-MRF Results. In Section 6.3, we described the
implementation of rm-MRF, which we use here to translate
wλ(r) at λ = 0 (exact exchange energy density) to r( )x . Figure 9
shows the r( )x plots for the He, Be, and Ne atoms [panel (a)],
along the internuclear axis of CO at equilibrium [panel (b)],
along the molecular plane of benzene [panel (c)]. In all cases,

r( )x display distinct shell structure and varies between ∼−0.4
and ∼0.2 (for CO and benzene, it varies between ∼−0.2 and
∼0.2). These data are ideally suited for ML of the exchange part
of MRF since a large amount of data can be generated from a
small set of molecules since every grid point can be used as a
datapoint in the training. In addition to these rm-MRF data for
exchange, the simple UEG (eq 35) and scaling relation (eq 20)
for MRF exchange can also be incorporated into the machine-
learned MRF exchange models, and we will further explore this
direction in future work.
7.3. MRF Model for the λ → ∞ AC Limit. In the previous

subsection, we have used the rm-MRF code to translate the exact
exchange energy density into the “exact” r( ). However, we
note that rm-MRF can be used for translating any other energy
density and at any λ (provided that is in the same gauge as MRF,
that of eq 7) to MRF’s i-averaged σ. We use now MRF to obtain
the “exact” r( ) from the (strongly interacting) wλ→∞(r)
energy densities (see the left panel of Figure 10). In addition to
the exact wλ→∞(r), we also use wλ→∞(r) from the shell model,28

which gives the best approximation to wλ→∞(r) so far.9 By
“exact” wλ→∞(r), we refer to the one obtained from the specific
“strictly correlated electrons” approach for spherically sym-
metric systems23 (see ref 9 for further details). For comparison,
we also show the weak coupling limit = =r r( ) ( )x 0 quantity
for Be, which, as previously observed, is mostly negative (except
in the inter-shell region).30 On the other hand, r( ) stays
roughly around 1/2, with the maximum value of ∼0.8 at the
nucleus [note from Section 4 that =1 tends to ∼0.8 for the
UEG in the low-density limit, the limit where wλ=1(r) tends to
wλ→∞(r)]. We can also see from the left panel of Figure 10 that
the r( ) from the shell model is not a very good
approximation to its “exact” counterpart [that is r( )
obtained from the reference wλ→∞(r) by rm-MRF]. Never-
theless, wλ→∞(r) from the shell model is highly accurate (see the
right panel of Figure 10). This shows that one has some margin
for error when modeling the MRF’s fluctuation function, as the
errors in the resulting XC energy densities are typically smaller
than the errors in the fluctuation function. To further reinforce
this point, and since r( ) is on average around 1/2, we
investigate here the MRF model, where r( ) is simply
always set to always to 1/2 (“MRF-half”). The resulting MRF-
half wλ→∞(r) for the beryllium atom is shown in the right panel
of Figure 10 and compared against its reference and shell model
counterpart. We can see that the resulting MRF-half
approximation displays point-wise accuracy very similar to the
shell model, which is, as said, the most accurate approximation
to wλ→∞(r) so far. Furthermore, MRF-half is even more accurate
than the shell model at larger distances from the nucleus (see the
inset in the right panel of Figure 10).

In addition to beryllium, in Figure 11, we also test the
accuracy of wλ→∞(r) from MRF-half for the neon and argon
atoms. For comparison, we also show accurate wλ=0(r) for the
two atoms. From Figure 11, we can see that MRF-half also gives
accurate wλ→∞(r) for Ne and Ar but displays fewer features than

Table 1. [ ]W
1

(Eq 3; Electron Repulsion Energies at the Full
Coupling Strength Minus the Hartree Energy) Obtained
from “MRF Original” [Eq 11]; “MRF New” [the Fluctuation
Function Given by Eq 41 with F Given by Eq 42]; and “MRF
Optimized” [the Fluctuation Function Given by Eq 56 with
0.26, See Figure 8]a

MRF original MRF new MRF optimized reference

He −1.187 −1.082 −1.102 −1.103
Be −2.807 −2.943 −2.849 −2.834
Ne −12.859 −12.832 −12.771 −12.765
Mg −16.362 −17.011 −16.689 −16.701
Ar −31.193 −31.772 −30.990 −31.350
Ca −35.896 −37.172 −36.180 −35.600
H− −0.542 −0.508 −0.498 −0.453
Li− −2.145 −2.243 −2.052 −1.946
F− −10.910 −11.002 −10.982 −10.889
Cl− −28.592 −29.314 −28.675 −28.890
MAE 0.160 0.339 0.153

aAll MRF energies have been calculated on the Hartree−Fock
densities within the TZVP basis set56 by using the MRF solver
described in Section 6. The reference values (last column) have been
calculated from CCSD and are taken from ref 29.

Figure 8. MAE in MRF’sWλ=1[ρ] (eq 3; electron repulsion energies at
the full coupling strength minus the Hartree energy) for the set of
atoms(ions) of Table 1 with the d parameter in the underlying
fluctuation function on eq 56. The optimal value of d is about 0.26.

Journal of Chemical Theory and Computation pubs.acs.org/JCTC Article

https://doi.org/10.1021/acs.jctc.3c00437
J. Chem. Theory Comput. 2023, 19, 6172−6184

6181

https://pubs.acs.org/doi/suppl/10.1021/acs.jctc.3c00437/suppl_file/ct3c00437_si_001.pdf
https://pubs.acs.org/doi/10.1021/acs.jctc.3c00437?fig=fig8&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.jctc.3c00437?fig=fig8&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.jctc.3c00437?fig=fig8&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.jctc.3c00437?fig=fig8&ref=pdf
pubs.acs.org/JCTC?ref=pdf
https://doi.org/10.1021/acs.jctc.3c00437?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as


the exact wλ→∞(r). This would be likely fixed if one designs a
more sophisticated r( ), by e.g., letting it vary between 1/2
and 0.8 (the maximum σ value from the UEG) and ensuring that
it satisfies the scaling invariability constraint of eq 20 (this
constraint is trivially satisfied in MRF-half, as σ̃ is always 1/2).

8. CONCLUSIONS
Here we make two key steps toward using MRF, a model
inspired by the SIL of DFT, for the construction of robust
exchange−correlation (XC) functionals that contain full spatial
nonlocality. The first step is on the theory side, where we showed
how the MRF model can be made exact for the UEG and how it
should behave under the uniform density scaling. We then used
these insights to construct improved fluctuation functions (a
parametric object that determines the MRF functional). The
second step is on the practical side, where we showed how the

MRF functional can be implemented into standard (Gaussian
basis set) quantum chemistry codes for a given density. This
code and its results will be used to validate future MRF codes
that will draw from further numerical approximations. For
example, we expect that density fitting will greatly simplify the
integral routines, speed up the MRF’s evaluation, and facilitate
the SCF implementations of the MRF functional.

With the affordable (N3) nonlocality inspired by the SIL of
DFT,�the use of MRF is very promising for the ML of the new
generation of XC functionals. Specifically, we plan to construct
MRF via ML of the fluctuation function of eq 41. In this
equation, we have an exchange term that can be learned from the
“exact MRF data” obtained from the “rm-MRF” procedure from
the exact exchange energy density (Section 7.2). Then, in the
correlation terms of the fluctuation function, we will distinguish
the physics-based objects (e.g., the second term on the r.h.s.

Figure 9. r( )x obtained from rm-MRF from the exact exchange energy density: (a) He, Be, and Ne atoms as a function of distance from the nucleus;
(b) CO at equilibrium along the internuclear axis (positions of the two nuclei are shown); (c) benzene along the molecular plane. All exact exchange
energy densities have been obtained at the HF/TZVP level.

Figure 10. Left panel: r( ) for the beryllium atom with distance from nucleus r. r( ) is computed from the reverse MRF machinery (rm-MRF;
Section 2.3). r( ) is computed at λ = 0 fromwλ=0(r) and fromwλ→∞(r) (one coming from the shell model and the other coming from the exact λ → ∞
limit). Right panel: wλ→∞(r) for the beryllium atom, comparison of the exact shell model and the one computed from MRF, where σ̃(r) is set to 1/2
(“MRF-half”). The inset shows wλ→∞(r) multiplied by r.

Figure 11. wλ→∞(r) exact and the one from MRF-half for the neon atom (left) and argon atom (right). wλ=0(r) (exchange) is also shown for
comparison.
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whose physics is described in ref 31 and the UEG part of the
third term on the r.h.s. of eq 41) from the objects that will be
machine learned. For example, F of eq 41 will be machine
learned from the standard DFT (Jacob’s ladder features) and
MRF-specific fully nonlocal features [e.g., Si(r) and ai of eqs 12
and 13, respectively].

Finally, the present paper also demonstrates the great
versatility of the MRF functional for approximating different
correlation regimes. While the original and very simple
fluctuation function of eq 11 has been used to model λ = 1
quantities, here we also show that setting the fluctuation
function simply to 1/2 delivers accurate local approximation for
XC energy densities for the λ → ∞ limit.
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