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Transferability, especially in the context of
model generalization, is a paradigm of all scien-
tific disciplines. However, the rapid advancement
of machine learned model development threatens
this paradigm, as it can be difficult to understand
how transferability is embedded (or missed) in
complex models. A rigorous understanding of
transferability in chemical representation remains
an open problem. To this end, we introduce a
transferability assessment tool and apply it to
a controllable data-driven model for developing
density functional approximations (DFAs), an in-
dispensable tool in everyday chemistry research.
We reveal that human intuition in the curation of
training data introduces chemical biases that can
hamper the transferability of data-driven DFAs.
We use our transferability assessment tool to mo-
tivate transferability principles; one of which in-
troduces the key concept of transferable diversity.
Finally, we use transferability principles to pro-
pose data curation strategies for general-purpose
machine learning models in chemistry.

I. INTRODUCTION

For the past half-century, Density Functional Theory
(DFT)2,3 has made an unparalleled impact across a range
of scientific and engineering disciplines. Nowadays, this
impact is greater than ever, as evidenced by the large
portion of the world’s supercomputing power being con-
sumed by DFT simulations4,5. In recent years, machine
learning (ML) is transforming nearly all scientific dis-
ciplines, and DFT is no exception6,7. Recent advance-
ments in ML-based DFT8 signal the beginning of a race
to discover the DFT ‘holy grail’ or at least a highly effec-
tive surrogate thereof – holding promise to revolutionize
the entire field of chemistry9. Building on this momen-
tum, ML of density functional approximations (DFAs)
is enabling rapid advances in the predictive quality of
quantum chemistry, by enhancing the practical cost and
quality benefits of DFT by empirical strategies based on
“big data” training sets10,11.
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The assumption that a DFA is transferable is implicit
in every DFA developed for general use, and this culture
of universal density functionals has been readily adopted
by the machine-learned DFA (ML-DFA) community. The
data-driven approach of ML-DFAs allows for examina-
tion of the feedback loop between the ML-DFA training
sets, and the overall ML-DFA performance post train-
ing. To conduct this analysis this work will introduce a
transferability assessment tool that involves training an
ML-DFA functional on a test set A, and assessing the
performance of that functional on test set B, abbrevi-
ated to B@A (or [test set]@[training set]), more details
given in Section II. Achieving high performance onA@A
is often straightforward, as we can always increase model
flexibility by adding more parameters. However, the true
challenge lies in ensuring that the ML-DFA is transfer-
able to B (i.e. B@A), meaning it genuinely learns rather
than simply memorizes patterns in A. This task prompts
a range of questions.

First, a key and outstanding problem is how do we
create A to target transferability of our ML-DFA
model to a wide range of chemical physics?

Is more always more? (i.e. does increasing the size
of set A always improve B@A?)

Can we quantify how difficult test set B is for a
model trained on A? (e.g. can we quantify the in-
tuition that training a model on atomisation ener-
gies of alkanes better predicts atomisation energies
of alkenes than transition metal barrier heights?);

Can we quantify the ‘distance’ or difficulty level
between training set A and test set B?

Does the inclusion of well-known or well-studied
chemical structures in A limit the model’s trans-
ferability to unseen chemistry?

After all, the ultimate goal of DFT simulations is not
just to confirm and rationalize what we already know
from experiments but to accurately predict (transfer to)
unseen chemistry and unperformed experiments9.
In using the transferability assessment tool (TAT) to

explore the above questions, we show that simply ex-
panding the number and/or type of chemical systems in
a given training set is insufficient to improve an ML-DFA
in general (Section 3). By contrast, we reveal three trans-
ferability principles that do embed transferability in a
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FIG. 1. a) Errors for XYZ-DFAs with 1–7 parameters applied to subsets covering reaction and barrier chemistry – line colour
indicates the test set and dot colour the training set. b) Errors for XYZ2 (2-parameter double hybrid DFA) along a linear
interpolation path (α = IαBarriers + (1− I)αReactions and similar for β) between the Reactions (I = 0) and Barriers (I = 1)
minima. c) Transferability matrices between selected benchsets for XYZ1, XYZ4 and XYZ7 (double hybrids with varying
parameter number). d) Boxplots with XYZ7 (one with BLYP and other with PBE semilocal parts) errors for a large organic
database (Org.=GMTKN551) with parameters trained on the whole database and on the T100 benchset (designed from our
transferability principles). e) Periodic tables showing the elements (green) included in GMTKN55 and T100.

benchset, taken together, and that may therefore be used
in the curation of better training benchsets. Most impor-
tantly, we introduce the concept of transferable diversity
to our training set design – meaning we aim for our train-
ing set to yield good transferability to a diverse range of
chemical behaviours. We use these principles to design
the T100 benchset (final part of Section 3). Ultimately,
this work leaves us positioned to recommend a strategy,
detailed in the Conclusions, for the development of new
benchsets that are designed to embed transferability into

ML-DFAs.

The following sections will delve into specific details.
For now, it suffices to mention that as a controllable
model, we use a double-hybrid functional form12,13, de-
fined by one12 to seven14 parameters. This model facil-
itates the construction of thousands of data-driven den-
sity functional approximations, effectively illustrating the
utility and analytic power of our TAT. Some key findings
of our study are presented in Fig. 1. Fig. 1(a) focuses on
our model’s efficacy in predicting reaction energies and
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barrier heights – crucial for calculating thermodynamics
and kinetics, respectively1. We train on reaction ener-
gies and test on barrier heights (Barriers@Reactions),
and then reverse the sets (Reactions@Barriers). From
Fig. 1(a) it is clear that our model excels in transferring
from reaction energies to barrier heights (thermodynamic
to kinetic parameters), but not the other way around.
The reason for this asymmetry becomes apparent when
we look at the shapes of the cost functions for our two-
parameter model and compare the values at their respec-
tive minima to those at each other’s minima, as shown
in Fig. 1(b).

Fig. 1(c) introduces the transferability matrix TB@A,
a unitless measure precisely defined as how well a given
model trained on A performs for B (B@A) relative to
the accuracy limit of that model for A@A. Unlike in
Fig. 1(a), which focuses solely on the transferability be-
tween reaction energies and barrier heights, Fig. 1(c) in-
cludes multiple classes of organic chemical processes1.
The matrix provides insights into: (i) transferability for
each TB@A pair; (ii) asymmetry in transferabilities, as
shown by differences in TB@A and TA@B values; (iii)
the rate at which transferability decreases with the in-
creasing number of parameters for different B@A pairs;
(iv) the chemical classes most transferable to and most
transferable from. Transferability matrices are thus a key
foundation of our TAT.

Fig 1(d) demonstrates that two different flavours of our
seven-parameter model14, trained on the T100 bench-
set (of 100 processes carefully curated around trans-
ferability principles of reaction, elemental and trans-
ferable diversity), perform as well as their accuracy
limits when tested on the extensive “general-main
group thermochemistry, kinetics and noncovalent interac-
tions” (GMTKN55) database of 1505 organic processes1.
This confirms that transferability principles effectively
enhance the model’s applicability to larger datasets.
Fig 1(e) further highlights the greater elemental diver-
sity in our small T100 compared to large GMTKN55,
as it covers a far broader range of groups in the periodic
table, despite being fifteen times smaller.

II. TRANSFERABILITY ASSESSMENT TOOL

To measure transferability from A to B, we introduce
a two-set error MADB@A, which is the mean absolute
deviation (MAD) on test set B for a DFA trained on A.
We then formulate a unitless transferability matrix:

TB@A =
MADB@A + η

MADB@B + η
≥ 1 . (1)

η = 0.01 kcal/mol regularizes results for small energies.
By definition, TA@A = 1 (the case of perfect transferabil-
ity) and minimization principles dictate that TB@A ≥ 1,
with larger values indicating poorer transferability. The
TB@A transferability matrix therefore quantifies the per-

formance of a model trained on A when applied to B,
normalized by the model’s inherent accuracy limit for B.

To demonstrate our TAT, we use a double hybrid (DH)
family of DFAs, called XYZp

14, where p is the number of
empirical parameters varying from one15 to seven14 (see
Methods for the functional forms). Varying the num-
ber of parameters lets us vary the level of empiricism,
and thus emulate varying degrees of “machine learning”.
The DH form is chosen for its generality, as it sits at
the top of the current DFA Jacob’s ladder (a hierarchy
of DFAs based on their mathematical complexity)16,17.
This allows our DH forms to reduce to functional forms
from lower rungs of the ladder during parameter opti-
mization. We use Hartree-Fock (HF) orbitals to calcu-
late all energy terms, to prevent uncontrolled error can-
cellation of functional- and density-driven errors when
building data-driven DFAs15,18.

We are now ready to apply the TAT to real data, for
the purpose of revealing limitations of existing protocols,
and uncovering key principles that enhance transferabil-
ity and performance across diverse systems.

III. RESULTS

Before beginning a detailed analysis of transferability,
consider a “minimally-empirical” approach in which a
DFA is designed around several fundamental constraints,
and then optimised over a small number of processes
to determine any remaining parameters. The case of
XYZ3

19 we train here on G21IP is a prototypical ex-
ample of such a strategy. The 3-parameter XYZ form
approximately satisfies various constraints by construc-
tion19, and training on the 21 ionisation potentials in the
benchset G21IP1,20 fills in the missing gaps.

At first sight, this seems like an effective strategy: it
yields MADGMTKN55@G21-IP = 1.91 kcal/mol across
the extensiveGMTKN55 organic benchset, not far from
the optimal MADGMTKN55@GMTKN55 = 1.84 kcal/mol
achieved by full optimization of the three XYZ3 pa-
rameters over GMTKN55. Using Eq. (1), we find a
transferability matrix element of TGMTKN55@G21IP =
1.91+0.01
1.84+0.01 = 1.04, indicating G21IP’s high transferabil-
ity to GMTKN55. This compares to, for example,
TGMTKN55@W4-11 = 1.7 obtained when training on the
W4-111,21 set of atomization energies.

So what makes G21IP such an exceptionally good
training set? We shall later see that the answer from
our TAT is “nothing at all” and that this example calls
for more transparency when it comes to selecting a train-
ing set in designing data-driven DFAs. But for more in-
sightful answers, we must further analyze the nuances of
transferability, which we will do through concrete exam-
ples in the following sections.
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Mindless molecules Mindful molecules

FIG. 2. Mean absolute deviation (MAD, log scale) for GMTKN55@subset, where subset is a subset of GMTKN55. Solid
colours indicate XYZ3, black lines indicate XYZ7. The order reflects the MAD and absolute difference between XYZ3 and
XYZ7. b) Errors for DFAs with 1–7 parameters applied to subsets covering mindless and mindful construction of benchmark
set. Some example mindless and mindful molecules are shown at right.

Transferability concepts: motivation through organic
chemistry

Our goal is motivate transferability principles that can
be applied more broadly. As a first step, let us use the
key concepts introduced in Section II to delve into the
details of Fig. 1(a-c), focusing on transferability within
the large GMTKN55 organic chemistry database.

Fig. 1(a) shows that training barrier heights (194 pro-
cesses1) on reaction energies (243 processes1) performs
nearly as well as training on barriers themselves. How-
ever, reaction energies perform poorly when trained on
barriers, suggesting either barriers are easier to learn or
that reactions are better for training. Fig. 1(b) explains
this result and lets us pick the right conclusion for the
case of a two-parameter XYZ2 (the parameters being
exact exchange fraction and MP2 correlation fractions).
Errors in Barriers are rather insensitive to changes in
parameters, meaning that picking sub-optimal parame-
ters does not lead to major additional errors. Not so for
errors in Reactions, where curvature is much sharper
and, consequently, changing parameters rapidly worsens
results. Therefore Barriers are easier to learn than Re-
actions.

The TB@A transferability matrices in Fig. 1 for XYZ1,
XYZ4, and XYZ7 show how transferability rapidly wors-
ens as the number of model parameters increases. In
the 1-parameter case, many TB@A values are close to
1.0, indicating high transferability. Conversely, in the 7-
parameter model, numerous entries exceed 3, implying
performance three times worse than optimal. The up-
per 4 × 4 block highlights transferabilities among four
test subsets: Reactions, Barriers, NCI, and Basic1

(everything else, such as atomization energies, ionization
potentials, proton/electron affinities, etc.). The block
reveals that Reactions is the most transferable train-
ing set, indicated by the smallest values in its column.
Conversely, Basic appears to be the most challenging
to transfer to, as evidenced by the largest values in its
row. In the Supplementary Information (SI), we show
TB@A by further breaking down GMTKN55’s subsets
(Supp. Figs S6–S8). Interestingly, within XYZ1, reac-
tion sets are more transferable to barriers than different
barrier sets are to each other (Supp. Fig. S6).

Furthermore, Fig. 1(c) already challenges the obvious,
and so far dominant in data-driven DFA development,
strategy of increasing the size of datasets. Diet100 (with
100 processes) does a much better job as a training set
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than any of the larger (∼ 250 processes) ‘chemistry’ sub-
sets; and performs nearly as well as GMTKN55 at pre-
dicting Reactions, Barriers and Basis. Unfortunately,
the way Diet100 was constructed offers no useful in-
sights for improving transferability principles, although
it does convincingly confirm that quality is more impor-
tant than quantity.

Fortunately, GMTKN55 comprises 55 subsets, each
representing (more-or-less) different types of chemistry.
We can leverage this diversity to develop a better un-
derstanding of transferability and use it to create the
T100 set, explicitly engineered for high transferability,
as hinted at in Fig. 1(d) and (e). We will revisit these
two panels after elaborating on the essential principles
that inform this set’s design.

Transferability principle 1: Reduce human bias in the
training set to achieve genuine reaction diversity

Consider a hypothetical experiment involving two dis-
tinct groups: chemistry students and art students. Given
a molecular editor and specific drawing rules (e.g., use
no more than 16 spheres in total and stick to the col-
ors white, gray, blue, etc.), the optimized structures and
benchmarked energies from their drawings would form
the basis for two different empirical density function-
als (’Art’ and ’Chemistry’ functionals). We will show
that functionals trained on the art students’ molecules
would easily outperform those based on the chemistry
students’ designs. The latter group’s chemical intuition
is to blame, as it introduces unexpected biases in the
data.

To begin, let us play a game where we optimize our
DFA models for each of the 55 subsets within GMTKN55
and then assess how well each of the 55 resulting DFAs
transfers to the full GMTKN55 database. Fig. 2(a) shows
the key results from this game, displaying MADs for
GMTKN55@subset from each of the 55 subsets, us-
ing 3- and 7-parameter models, XYZ3 and XYZ7. In
most cases, MAD for XYZ3 and XYZ7 are vastly differ-
ent, and even when they are not, MAD are very large.
These indicators of poor transferability reflect the fact
that different subsets capture different chemistry and do
not represent the whole GMTKN55 in this specific trans-
ferability context.

Returning to our opening example, we see that G21IP
performs well with XYZ3 but poorly with XYZ7 – its
transferability is strongly influenced by the number of
free parameters (Supp. Fig. S1 further highlights this
point when both XYZ3 and XYZ7 are applied to non-
covalent interactions). Indeed, G21IP is not unique
in that regard – transferability for XYZ7 is almost al-
ways worse than XYZ3. Increasing parameters elevates
the risk of overfitting, challenging us to identify datasets
whose transferability remains robust despite additional
parameters. While regularization strategies applied to
a DFA form (through e.g., physical constraints) can

enhance its transferability22,23, our TAT has a differ-
ent focus that complements this regularization strategy.
Namely, Eq. (1) allows us to see how transferability varies
with different training sets for any optimizable DFA
form, enabling us to identify general principles for the
design of training sets with improved transferability.
Transferability principle 1 is revealed by the standout

performer in Fig. 2(a): MB16-431,24. What is special
about MB16-43? It is the only subset in GMTKN55
that is not biased toward chemical intuition or the lim-
ited chemical space it spans. Simply put, unlike the re-
maining 54 subsets, its structures have not been manually
drawn by humans before undergoing geometry optimiza-
tions. Rather, MB16-43 avoids unnoticed human bias via
“mindless” (more accurately, a clever random strategy)
construction of molecules – we shall henceforth denote it
as Mindless to stress this feature.
Fig. 2(b) shows that DFAs trained on Mindless (43

processes) predict good energies for a similarly-sized
more Mindful (DARC+ISO34 with 48 processes cover-
ing Dies-Adler and isomerisation reaction energies1) se-
lection of data. But, the reverse is not true – Mind-
less@Mindful has up to six-fold increases in errors com-
pared to Mindless@Mindless. Our results thus con-
firm that mindless benchmarking achieves its goal of
“[making] use of random elements constrained by system-
atic and controllable specifications to avoid unsystematic
and uncontrolled criteria”.24 The small size of Mindless
again stresses the importance of quality over quantity.
Furthermore, the transferability captured by Mind-

less is independent of both the Mindful dataset
(Supp. Fig. S11) and the semilocal part of our func-
tional (Supp. Fig. S12). We therefore see that Mind-
less captures genuine diversity of chemical interactions
– i.e., it achieves transferability principle 1. In simpler
terms, Mindless (art students) molecules yield far bet-
ter functionals here than Mindful (chemistry students)
ones.

Transferability principle 2: Ensure transferability to and
from transition metal chemistry for elemental diversity

Modern technologies rely on most stable elements in
the periodic table.27 By contrast, two thirds of processes
in GMTKN55 contain only C, H, N, O or F. This high-
lights a second limitation of the training data we have
considered so far – a lack of elemental diversity. Im-
proving elemental diversity is the most intuitive of the
transferability principles, yet we shall see it still throws
up some surprises.

As GMTKN55 completely excludes transition metals
[Fig. 1(e) shows the elements of the periodic table that
GMTKN55 covers], we turn to TMC151,25 a 151-process
benchset based around transition metal (TM) chemistry,
which lets us introduce some inorganic chemistry into
our game and supplement the results of GMTKN55. De-
spite the sparsity of TM benchmarking (151 versus 1505
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FIG. 3. Optimal values for the two-parameter model
(markers) for organic (Org.=GMTKN551) and transition
metal (TM=TMC15125) processes, and subsets thereof (e.g.,
TMOR = metal-organic reactions25,26). Also shows the MAD
(contours) of organic processes as a function of the two pa-
rameters, relative to the optimal value. Inset: XYZ6 trans-
ferability matrix for selected Org. and TM sets.

processes) we are nonetheless able to develop an under-
standing of transferability between main group and TM
chemistry.

Fig. 3 reveals that training on main group elements is
not a good strategy for predicting transition metal chem-
istry, or vice versa, even in the simple XYZ2 model. The
optimal parameters for TM sets live in a different region
of the parameter space compared to those for the main
group sets. Transferability from TMC151 (denoted TM
to stress its focus on transition metals) to GMTKN55
(denoted Org. to stress organic chemistry) is very poor,
as can be seen from the contour plots (for XYZ2) and in-
set transferability matrix (for XYZ6). Simply adding the
two sets (TM+Org.) improves results in general, but
still has transferability issues for both Org. Barriers
and TM Barriers (see inset).

In view of the extremely poor transferability of DFAs
trained on TMs to Org., adding elemental diversity (e.g.,
molecules with 3d elements) to a main-group training set
could ruin the good accuracy of DFAs for Org (further
highlighted in Supp. Fig. S19). However, as we shall soon
see, this risk is completely eliminated once the training
set is diversified in a manner that explicitly favors trans-
ferability. Thus, what we seek in a training set is not
just elemental diversity, as this can come with drawbacks.
Instead, what we want in the training set and what we
advocate for is a balance between genuine reaction di-
versity, elemental diversity and transferable (chemical)
diversity – to be defined soon. Mindless gave us our
first hint that human intuition may be counterproduc-
tive to such a goal. We will now proceed to show how it

can be achieved more systematically.
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FIG. 4. Transferability energy (log scale – note magnitude
of outliers) of the 55 GMTKN55 subsets trained on different
benchsets, for a 7-parameter XYZ-DFA. Beeswarm plots show
the 55 benchsets, horizontal lines and numbers indicate the
median, boxes indicate the 1st–3rd quartiles.

Transferability principle 3: Transferable diversity at work in
the T100 set

After adding some TM into the game, we are ready to
return to the last two panels of Fig. 1, where we showed
some results for our new benchset, T100. The most im-
portant feature of T100 is that it is explicitly designed
around three transferability principles: 1) it randomly
selects chemical processes from TM+Org. to yield gen-
uine reaction diversity; 2) it includes a bias in construc-
tion toward genuine elemental diversity; 3) it is optimized
to improve average transferability in the XYZ1, XYZ4

and XYZ7 functional forms, giving us a final ML-DFA
that is explicitly designed to give good transferability.
The principles behind the first two have already been
discussed. Full details are in Methods and SI Sec. S2.
Importantly, the third design feature for T100 pro-

vides an implicit definition of transferable diversity: a
benchset has transferable diversity if an approach trained
on it is transferable to (i.e. performs well on) other
benchsets. Transferable diversity is therefore the prop-
erty that “chemistries” are appropriately weighted or
proportioned in the benchset, so as to improve predic-
tions without accidental bias. Mindless has good trans-
ferable diversity, but less elemental diversity than T100.
The boxplots in Fig. 1(d) indicate that XYZ7 trained

solely on the 100 chemical processes in T100 performs
nearly as well as when trained on all 1505 GMTKN55
processes. This holds for both the BLYP-based XYZ7

model used in T100 creation; and a PBE-based XYZ7

variant that has not been seen during the construction of
T100. The differences between the two are described in
Methods. Fig. 1(e) shows that T100 covers a far broader
range of periodic table groups than GMTKN55, de-
spite the two containing similar numbers of elements.
Figs 1(d,e) thus reveal the effectiveness of using trans-
ferability principles in data curation.
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The results shown in Fig. 4 highlight that the T100
optimisation strategy has very useful consequences for
the transferability energy cost,

∆MADB@A := MADB@A −MADB@B ≥ 0 , (2)

(i.e. the increase in MAD energy caused by training on
the ‘wrong’A) which supplements the transferability ma-
trix, TB@A. B is any of the 55 subsets of GMTKN55
while A (listed below each figure) is the training bench-
set, used to optimise XYZ7. We see that both BH761

and our old friend G21IP provide poor training data,
leading to excess errors of over 1 kcal/mol in 75% of sub-
sets. Thus, the poor results of Figure 2(a) are not caused
by a small number of outliers, but are systematic.

By contrast, T100 actually out performs GMTKN55
when applied to diverse organic chemistry – albeit as a
consequence of our choice to sample by set. This is de-
spite being optimized to balance transferability between
main group and TM chemistry [remember the periodic
tables for the two sets shown in Fig. 1(e)]. Indeed,
75% of benchsets are predicted to within 2 kcal/mol of
their optimal (self-trained) values and 50% are within
0.7 kcal/mol.

TABLE I. MAD (kcal/mol) for different datasets (rows) of the
XYG7 functional trained on the datasets given in columns.
Results shown for BLYP- and r2SCAN-based XYZ7.

Set @Self @T100 @Mindless @Mindful
BLYP

S66 0.18 0.34 0.33 0.32
W4-11 2.58 4.58 6.85 57.38
Water27 0.08 0.82 4.82 6.08
BH76 1.41 3.70 3.11 4.96
OrgDiff 5.41 7.59 8.87 37.24
ISOL24 0.36 1.36 1.65 0.86
TMB 1.21 4.83 5.75 4.37

r2SCAN
S66 0.21 0.41 0.36 0.71

W4-11 2.41 3.46 4.43 32.25
Water27 0.06 1.36 0.98 5.35
BH76 1.77 3.13 3.10 4.77
OrgDiff 6.11 7.89 7.70 18.06
ISOL24 0.51 2.17 1.52 0.94
TMB 1.85 5.06 5.50 5.65

Table I reports results for 7-parameter DFAs tested
on a diverse list of example benchsets; and reveals that,
XYZ7(@T100) = 0.853EHF

x − 0.024ELDA
x +0.161EB88

x −
0.036ELDA

c + 0.490ELYP
c + 0.461EMP2ss

c + 0.749EMP2os
c ,

introduces only modest errors compared to a very high
target – the best possible result for each set (@Self, that
is MADB@B). Interestingly, this DFA has more exact
exchange and MP2 correlation than other double hy-
brids,12,19,28 in part because we use HF orbitals as in-
puts15. High amounts of exact exchange and MP2 cor-
relation also enable XYZ@T100 to give high accuracy
for self-interaction-error (SIE) related problems which
are typically challenging even for double hybrids15 (see

Figs S20 and S21 for further examples for the related
SIE4x4 set). Going back to Fig. 4, training on mindless
benchmarks (@Mindless) is a little worse on average,
but still better than using @Mindful molecules. Results
for r2SCAN (with different optimal parameters) follow a
similar trend.

The accuracy limit and focus on difficult cases

Finally, the TAT also lets us evaluate the accuracy
limit of double hybrids – that is the A@A case, which
is the best possible results for a specific kind of prob-
lem given the double hybrid functional form. We remind
the reader that XYZ7(A) is optimized over all seven pa-
rameters, so represents the best possible pure (i.e. not
range-separated) double hybrid for a given benchset A.
Therefore, MADA@A indicates the smallest possible er-
ror from our XYZ7 double hybrid family and dictates its
accuracy limit.
Fig. 5 explores the accuracy limits of double hy-

brid functional forms by showing the distribution of
absolute errors for various benchsets, with a focus on
difficult cases25,29. It reports a selection of optimal
(self-optimized A@A cases) and non-optimal (A@B
cases) DFAs, to reveal that the overwhelming major-
ity of organic processes can be predicted with good
(< 1 kcal/mol; chemical) or ok (1–7 kcal/mol; useful)
accuracy, so long as they are trained on a good reference
benchset (here, Org.=GMTKN55 or T100).
But, Fig. 5 also reveals that difficult cases, partic-

ularly in transition metals, remain elusive. A quarter
(24%) of difficult organic (OrgDiff)29 and half (53%) of
difficult transition metal (TMDiff)25 processes exceed
acceptable error margins, even with the optimal DFAs.
Supp. Fig. S22 reveals that errors cannot be explained by
spin-contamination or low-quality benchmarks. Despite
generally excellent performance on main group chemistry,
current DFA strategies are simply not ready to address
true chemical diversity (mechanism and elements) with
standard functional types even when using ingredients
from all rungs of Jacob’s ladder16,17. Moreover, DFAs
trained on these difficult cases perform poorly on the full
Org., especially compared to the almost “best case sce-
nario” of T100 as a training set.
There is a plus side, however, as difficult cases for DFAs

are often also difficult cases for the (very expensive) cre-
ation of benchmarking data. The accuracy limit suggests
that benchmark quality (and thus cost) may therefore
carefully be relaxed in some difficult cases.

IV. DISCUSSION AND CONCLUSIONS

Despite involving only very simple mathematics, we
have seen that the transferability assessment tool (TAT),
especially when applied to the XYZp protocol, provides
a wealth of analytic information about the training and
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FIG. 5. Fraction of proccesses with good (< 1 kcal/mol), ok (1–7 kcal/mol) and bad (> 7 kcal/mol) errors, MADB@A. Includes
selected optimal (B = A) and suboptimal (B ̸= A) combinations. Some example difficult molecules are illustrated to the left
(organic) and right (TM).

testing of data-driven DFAs. We can use it to deter-
mine what chemistry is hard to learn, what kinds of pro-
cesses are useful to train on, and to answer many of the
questions posed in the introduction. Transferability thus
provides an alternative conceptual framework for under-
standing chemical diversity.

The main conclusion from our work is that following
transferability principles in data curation is crucial for
the construction of general-purpose models in chemistry.
Thus, a training benchset should capture genuine chem-
ical and elemental diversity; in such proportions within
the benchset that they improve transferability (i.e. with
good transferable diversity). The evidence presented here
therefore suggests the following strategy for better con-
struction, optimization and refinement of benchsets that
can be used to train complex, data-driven DFAs:

1. Human input/bias should be reduced in the cre-
ation of training (and test) sets, in favour of ran-
domness in chemical construction;

2. Elemental diversity of training sets should be im-
proved, possibly via lower quality benchmarks;

3. Training sets and DFAs should be optimized and re-
fined with an explicit bias toward improving trans-
ferability, by testing transferability matrices during
their construction.

Our work has revealed that both Mindless (=
MB16-43, Figs 2 and 4) and T100 (Figs 1, 3–5) make
large steps in the right direction: Mindless eschews pre-
determined chemistry and T100 captures diversity and
transferability, both by design. The mindless strategy
can be (i) adapted to other cases (e.g., mindless ioniza-
tion potential or barrier height benchsets); (ii) further
extended by introducing randomness in the selection of
mindless potential energy surface points, which are not
confined to local minima; (iii) be biased toward elemen-
tal and transferable diversity [as done for T100, eq. (5)
below] to construct entirely new benchsets.

The success of Mindless and T100 as training sets is
also reminiscent of historical successes of DFAs trained on

unrealistic chemical physics (e.g. homogeneous electron
gas30 or Hooke’s atom31) in describing realistic chem-
istry. These DFAs are informed by a philosophy that
training should be done using areas of chemical space
that would typically be unseen by the test results. The
TAT and transferability principles therefore let us ex-
tend this philosophy beyond paradigmatic cases or in-
tuition – which becomes vitally important for machine-
learned DFAs, where better interpolation on chemistry
seen in training risks poorer extrapolation to (prediction
of) chemistry unseen in training.
It is also worth stressing that the TAT may be applied

to any empirical model, and especially those for which
the level of empiricism can be controlled. This includes
models based on wave function theories (at one extreme)
and machine learning of ‘classical’ energies from molecu-
lar geometries (at the other extreme). Work along these
lines should be pursued.
Finally, it is important to note that transferability

principles are important to consider even for models that
explicitly target a specific type of chemistry problem (e.g.
DFAs optimized for organic barriers or materials chem-
istry). Despite their narrower goals, such approaches im-
plicitly assume that the training benchset contains suffi-
cient diversity to enable predictions of similar problems;
and that the diversity is appropriately weighted. The
low transferability between subsets of Barriers reveals
that these assumptions are not guaranteed. Embedding
transferable diversity into training benchsets, even for
narrowly-focussed problems, enables higher confidence in
their predictive reliability.
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V. METHODS

A. XYZ DFAs

All XYZp functionals considered in this work have the
same fundamental functional form,

Exc =a1E
HF
x + a2E

LDA
x + a3E

(m)GGA
x

+ a4E
LDA
c + a5E

(m)GGA
c + a6E

MP2ss
x + a7E

MP2os
x ,

(3)

where Ex(c) indicate exchange (correlation) energy ap-

proximations, EHF
x is the exact HF exchange energy and

E
MP2ss(os)
c indicate the same-spin and opposite-spin parts

of the MP2 energy. E
(m)GGA
x and E

(m)GGA
c denote GGA

or meta-GGA exchange and correlation.

The DFA of Eq. 3 is thus defined by a seven-component
vector, a⃗. XYZ7 allows flexible choice of all seven com-
ponents. For XYZp<7, the components of the vector are
determined by the following rules:

p = 1: Choose exact exchange fraction, α, and set
a1 := α, a2 := a4 := 0, a3 := 1 − α, a5 :=
1− α2, a6 := a7 := α2

p = 2: Choose exact exchange fraction, α, and
MP2 fraction, β, and set a1 := α, a2 :=
a4 := 0, a3 := 1 − α, a5 := 1 − β,
a6 := a7 := β;

p = 3: Choose free a1, a3 and a6, and set a2 :=
a4 := 0, a5 := 1− a6, a7 := a6;

p = 4: Choose free a1, a2, a3 and a6, and set a4 :=
0, a5 := 1− a6, a7 := a6;

p = 5: Choose all except a4 := 0 and a7 := a6;
p = 6: Choose all except a7 := a6.

Unless otherwise specified, throughout this work we
use Becke’s (B88)32 exchange GGA and Lee, Yang and

Parr’s (LYP)33 for E
(m)GGA
x and E

(m)GGA
c , respectively

(BLYP). The optimal DFA for set A is then defined via,

XYZp(A) = arg min
XYZp

MAD(XYZp on A) (4)

where XYZp indicates all possible variants of Eq. (3) con-
sistent with the number, p, of parameters (using BLYP
as GGAs); and MAD(DFA on set) indicates the mean
absolute deviation of energies computed using DFA, av-
eraged across all processes in set. We thereby obtain,
MADB@A := MAD(XYZp(A) on B)

The results for two other combinations – PBE ex-
change + PBE correlation30; and r2SCAN exchange +
r2SCAN correlation34 – are given in the SI. The main
conclusions of our work do not change once we replace
the BLYP-based GGAs with their PBE-/r2SCAN-based
counterparts in Eq. 3.

B. Computational details

All HF and DFT calculations were conducted with
Orca 5.0.035. We used def2-QZVPPD for GMTKN55
and def2-QZVP for TMC151. For costly cases, def2-
QZVP(P) or def2-TZVP(P) were used. Further details
are in Sec. S1 of the SI. Orbitals were computed using
unrestricted Hartree-Fock (UHF) theory in all cases.

C. Special benchmark sets

Mostly we use the categories from GMTKN55 and
TMC151 or preexisting subsets (e.g. Diet10036). We
also have some special benchset (and aliases to stress im-
portant features):

Mindless is an alias for MB16-431,24, to stress its
most important feature;

Mindful combines DARC and ISO34 sets1; chosen
to represent chemical intuition-based counterpart
of Mindless;

Org. is an alias for GMTKN55, to stress its focus
on organic chemistry;

Org. difficult=OrgDiff is the P30-5 ‘poison’ sub-
set of GMTKN55, from Ref. 29;

Org. X indicates a subset from GMTKN55;

TM is an alias for TMC151, to stress its focus on
transition metal chemistry;

TM difficult=TMDiff is a subset of TMC151
composed of TMD + two MOR41 reactions + six
TMB barriers, all identified as difficult in Ref. 25;

TM X indicates a subset from TMC151;

TM+Org. is the combination of GMTKN55 and
TMC151;

T100 is a subset of TM+Org. designed around
transferable diversity principles (see below).

To construct T100 we first ‘mindlessly’ breed twenty
“pretty transferable” (denoted PT1...20) subsets of the
combined GMTKN55 and TMC151 (TM+Org.) bench-
set, each with 100 processes. Survival is dictated by a
genetic approach similar to that used to construct Diet
sets, with breeding success based on transferability of
XYZ7.

36 Full details are in Section S2 of the SI. Then,
we obtain T100 by selecting the best one, using:

T100 =argmin
PTk

[
1
3

∑
p∈1,4,7

T̄p(PTk)− 0.03Nel(PTk)
]
.

(5)

Here, T̄p(PTk) = 1
58

∑
B∈TM+Org. TB@PTk;XYZp

is the
average transferability from PTk to all 58 subsets of
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GMTKN55 and TMC151, using XYZp. Averaging over
p ∈ 1, 4, 7 helps to avoid ‘accidental’ transferability for
any specific number of parameters. Biasing to a larger
number, Nel(PTk), of unique elements in PTk helps
to avoid over-representation of main group chemistry,
which is 10 times more common than TM chemistry in
TM+Org..
We use BLYP (Becke exchange32 and Lee-Yang-Parr

correlation33) in Eq. (3) for both the breeding and op-
timisation stages, which means the transferable diver-
sity of T100 is biased toward BLYP. In principle, other
functional choices might lead to other sets. Nevertheless,
Supp. Fig. S23 reveal that training PBE- and r2SCAN-
based XYZp on BLYP’s T100 gives them transferability
similar to DFAs trained on the full GMTKN55 benchset.
T100 also works for a different functional form – that of
B3LYP,37 which excludes MP2 contributions entirely (see
Supp. Fig. S24). It follows that transferable diversity fea-
tures of T100 are largely independent of functional form
choice.
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