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ABSTRACT
The Lieb–Oxfordbound, a nontrivial inequality for the indirect part of themany-bodyCoulomb repul-
sion in an electronic system, plays an important role in the construction of approximations in density
functional theory. Using the wave function for strictly correlated electrons of a given density, we turn
the search over wave functions appearing in the original bound into amoremanageable search over
electron densities. This allows us to challenge the bound in a systematic way. We find that a max-
imising density for the bound, if it exists, must have compact support. We also find that, at least for
particle numbers N � 60, a uniform density profile is not the most challenging for the bound. With
our construction, we improve the bound for N = 2 electrons that was originally found by Lieb and
Oxford, we give a new lower bound to the constant appearing in the Lieb–Oxford inequality valid for
any N, and we provide an improved upper bound for the low-density uniform electron gas indirect
energy.

1. Introduction

Lieb andOxford (LO) [1,2] proved a nontrivial inequality
for the indirect part of the electron–electron interaction
energy (total expectation of the interaction minus the
Hartree term) with respect to the local-density approxi-
mation (LDA) exchange functional. This inequality has
been recently extended to include the gradient of the
density [3]. The LO bound has played and continues to
play a very important role in the construction of approx-
imate exchange-correlation (xc) density functionals
[4–13]. While traditionally only the more general LO
bound, valid for any number of particles N (and cor-
responding to N → �), has been taken into account
in the construction of xc approximations, it has
been shown very recently that the bound for N = 1

CONTACT Paola Gori-Giorgi p.gorigiorgi@vu.nl

and N = 2 is important in the context of metaGGA
functionals [11,12], and can be imposed as an additional
exact condition.

The bound for N = 1 was first given in [14], and
proved rigorously in [2]. For N = 2, Lieb and Oxford [2]
could only provide a non-optimal estimate of the con-
stant appearing in the bound. In this work, we develop
a strategy to systematically challenge the original LO
bound for a given number of electrons N. We use opti-
mal trial wave functions for a given density, and we then
vary the density in order to challenge the bound as much
as possible. After showing that a density that maximally
challenges the bound, if it exists, must have compact sup-
port, we follow the functional derivative of the bound
to challenge it as much as possible without violating
N-representability also for densities whose support is the
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whole space. As the first application of this procedure, we
improve the lower bound for N = 2 given by Lieb and
Oxford (see Equation (60)). Our construction also pro-
vides an improved lower bound for the constant appear-
ing in the Lieb–Oxford inequality valid for any N (see
Equations (63) and (64)), and an improved upper bound
for the indirect energy of the low-density uniform elec-
tron gas (see Equation (61)).

1.1. Notation

In electronic density functional theory (DFT), one is
interested in finding the ground-state energy and density
of N-electron systems with Hamiltonian

Ĥ = T̂ + V̂ee + V̂ext, V̂ext =
N∑
i=1

v(ri). (1)

T̂ and V̂ee are, respectively, the universal operators of the
kinetic energy (in Hartree atomic units used throughout
the paper),

T̂ = −1
2

N∑
i=1

∂2

∂r2i
, (2)

and of the interaction (Coulomb repulsion) energy
between the N electrons,

V̂ee = 1
2

N∑
i, j=1

1 − δi j

|ri − r j| . (3)

The function v(r), in contrast, is a non-universal but arbi-
trary attractive external potential required to bind the
repulsive electrons. Most of the formalism will be carried
out for general spatial dimension D = 2 and 3, r ∈ R

D,
focussing later on D = 3 only.

In the following, � denotes a correctly normalised
and antisymmetrised, but otherwise arbitrary N-electron
wave function (thus, not necessarily eigenstate of (1)),

� = �(r1σ1, . . . , rNσN ), (4)

where σ n are spin variables. By ρ� , we denote the particle
density associated with � ,

ρ�(r) = N
∑
σi

∫
dDr2 . . . dDrN

∣∣�(rσ1, r2σ2, . . . , rNσN )
∣∣2.
(5)

1.2. Indirect Coulomb energy

The electronic interaction energy in the quantum state� ,
defined as the expectation

〈�|V̂ee|�〉 > 0, (6)

excludes the infinite self-energies of the point electrons
(see the factor 1 − δij in Equation (3)). If the electrons
were a classical continuous distribution of negative charge
with density ρ�(r), their interaction energy would be
U [ρ�], with the Hartree functional

U [ρ] = 1
2

∫
dDr

∫
dDr′

ρ(r)ρ(r′)
|r − r′| > 0. (7)

The most severe error introduced by this classical con-
tinuum approximation is a spurious finite self-interaction
energy included for each electron. This is particularly
evident in the case N = 1, since for any normalised
one-electron wave function � , we have 〈�|V̂ee|�〉 = 0,
whileU [ρ�] > 0. The indirect interaction energyW[�]
is defined as

W [�] ≡ 〈�|V̂ee|�〉 −U [ρ�]. (8)

Forwave functions that are ground states of anN-electron
Hamiltonian (1) (or good trial wave function for it),
W[�] is normally negative. However, for a given density
ρ, it is possible to construct wave functions � for which
W[�] is positive or even infinity [2,15]. We emphasise
that U[ρ] is a density functional, while W[�] is a func-
tional in terms of the wave function � .

1.3. Lieb–Oxford bound

The quantity W[�] is limited by the Lieb–Oxford (LO)
bound,

−CD

∫
dDr ρ�(r)1+1/D ≤ W [�]. (9)

CD > 0 is the unknown minimum possible number that
makes this inequality true for all wave functions � in
D = 2 or 3 dimensions. So far, it is rigorously known
that C3 � 1.6358 [16] and C2 � 481.28 [17], and it has
been argued [18], on physical arguments, that the two
bounds can be tightened to C3 � 1.44 and C2 � 1.96.
The assumption behind these latter conjectured values is
that the tightest possible bound is provided by the indi-
rect energy of the uniform electron gas in the low-density
limit, which, in turn, is commonly identified with the
Wigner crystal total energy. This latter assumption has
recently been proven wrong for the 3D case by Lewin and
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Lieb [3]. The study presented in this paper will also raise
doubts on the first assumption that a uniform density is
really the most challenging case for the LO bound, after a
suitable optimal wave function for each given density has
been defined (see Section 4).

In terms of the LDA

− AD

∫
dDr ρ(r)1+1/D = ELDA

x [ρ] (10)

to the D-dimensional exchange energy, with the exact
constants A3 = 3

4 (
3
π
)1/3 ≈ 0.739, A2 = 4

3 (
2
π
)1/2 ≈

0.798, Equation (9) reads

λ[�] ≤ λ̄D, (11)

where we have defined

λ[�] ≡ W [�]
ELDA
x [ρ�]

, λ̄D ≡ CD

AD
. (12)

Considering all antisymmetric wave functions � in D
dimensions, we may write

λ̄D = sup
�:D

λ[�]. (13)

The above rigorous upper bounds for CD correspond to

λ̄2 ≤ 603, λ̄3 ≤ 2.215. (14)

Considering wave functions� →Nwith a given particle
number N, we define

λ̄D(N) = sup
(�:D)→N

λ[�]. (15)

Lieb and Oxford [2] have proven that λ̄3(N) is monoton-
ically increasing with its integer variable N,

λ̄3(N) < λ̄3(N + 1), lim
N→∞

λ̄3(N) = λ̄3. (16)

They have also proven that λ̄3(1) = 1.4786 (which was
given originally by Gadre et al. [14]) and they have found
a lower bound for λ̄3(2),

λ̄3(2) > 1.67. (17)

These bounds in D = 3 for N = 1 and N = 2 have
been recently used to improve a certain class of exchange-
correlation functionals [11,12].

In this paper, we develop a general strategy to find
improved lower bounds for λ̄D(N) by challenging the

Lieb–Oxford bound, i.e. by evaluating λ[�] with particu-
larly efficient trial wave functions� . Note that this is dif-
ferent from what is usually called tightening the bound,
which means finding improved upper bounds to λ̄D(N).

A new lower bound for λ̄D(N) (or, generally, for λ̄D)
is rigorously obtained each time we find a wave func-
tion that gives the highest value ever observed for λ[�]
(for a given N, or in general). Until very recently, it was
believed that a lower bound for λ̄3 is given by λ̄3 ≥
1.444/A3 = 1.955, corresponding to the total energy of
the bcc Wigner crystal in the classical jellium model.
However, in the jellium model, one can only identify
the total energy with the indirect energy if the elec-
tronic density is uniform, exactly equal to the one of
the positive background. Only in this case, the electronic
Hartree term will be exactly cancelled by the electron–
background and the background–background contribu-
tions to the total energy. Lewin and Lieb [3] have shown
that, in the 3D case trying to make this cancellation hap-
pen by taking a superposition of all the possible Wigner
lattices to have a uniform electronic density, introduces a
shift that does not disappear in the thermodynamic limit.
Thus, the value 1.955 does not correspond to the indi-
rect energy of any wave function and is not a valid lower
bound for λ̄3. In Section 4, we report a new lower bound
for general N, by considering an optimal trial wave func-
tion for N = 60, and we also report an improved upper
bound to the indirect energy of the low-density uniform
gas.

2. The density functional�[ρ]

Considering only those wave functions � → ρ (in D
dimensions) that are associated with a given particle den-
sity ρ = ρ(r), we define the density functional

	[ρ] ≡ max
�→ρ

λ[�]. (18)

Writing N� = ∫
dDr ρ�(r) for the electron number in

the state � , we then have

λ[�] ≤ 	[ρ�] < λ̄D(N�) < λ̄D. (19)

2.1. SCE interaction energy

More explicitly,

	[ρ] ≡ max
�→ρ

〈�|V̂ee|�〉 −U [ρ]
ELDA
x [ρ]

= V SCE
ee [ρ] −U [ρ]

ELDA
x [ρ]

,

(20)
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Table . Values 	[ρ] for some simple spherical two-electron trial
densities ρ(r) in three dimensions (N= ,D= ), obtained numer-
ically from Equations (A)–(A) of Appendix A. In the last two
rows, we consider densities with compact support: ‘droplet’ cor-
responds to the case of a sphere of uniform density [], and the
density proportional to r− [] has been evaluated for R =  and
R = . [Atomic units are used, where r is a dimensionless radial
coordinate.]

ρ(r)� 	[ρ] ρ(r)� 	[ρ]

e−10 (r−1)2 . e−50 (r−1)2 .
(+ r)− . e−r2 .
(+ r)− . e−r .
(+ r)− . r e−r .
(+ r)− . r/e−r .
(+ r)− . r/e−r .
− r, r�  . r−, r� [R, R] .
Droplet . cos(r), r ≤ π

2 .

with the SCE interaction energy of Appendix A,

V SCE
ee [ρ] = min

�→ρ
〈�|V̂ee|�〉. (21)

The acronym SCE [19–21] stands for ‘strictly correlated
electrons’ and defines a state |�SCE[ρ]|2, which is a very
accurate trial wave function (actually a distribution) for
the maximising one in Equation (20), being exact in 1D
[22] for any N, and in any dimension for N = 2 [23]. The
SCE state is detailed in Appendix A. In other words, Out
of all antisymmetric wave functions � that are associated
with a given density ρ, the one that provides (or is very close
to) the strongest challenge to the Lieb–Oxford bound is the
SCE state |�SCE[ρ]|2.Consequently, sinceV SCE

ee [ρ] can be
evaluated rigorously for a wide class of densities (Equa-
tion (A5) in Appendix A), we no longer need to consider
different trial wave functions � , but only different trial
densities ρ instead,

λ̄D = sup
ρ:D

	[ρ], λ̄D(N) = sup
(ρ:D)→N

	[ρ]. (22)

As a preliminary step, we have used simple analytical
trial spherical densities to evaluate 	[ρ] for D = 3 and
N = 2, reporting the results in Table 1. We see that the
lower bound (17) is readily improved to

λ̄3(2) > 1.70097. (23)

There is no need for considering scaled densities ρξ (r)
� ξDρ(ξr), with various values of ξ > 0, since 	[ρξ ] =
	[ρ] (see Equation (A14) in Appendix A).

It is interesting to note that, once the most challenging
wave function for each given ρ(r) is used, the densities
that give the highest values of 	[ρ] are quite surprising.

For example, a density proportional to e−50 (r−1)2 , consist-
ing of a thin spherical shell, is similar to the one of the
strongly correlated limit of the Hooke’s atom series. Yet,
it gives a value of	[ρ] which is much lower than the one
obtained from the exponential density. Indeed, the strong
correlation limit of the Hooke’s series is known to give
λ[ρ] = 1.489 [8], again much less than what we obtain
for exponential-like densities. The point is that previous
works which analysed numerically the LO bound [5–8]
focused on physical Hamiltonians of the kind (1), choos-
ing v(r) that could be particularly challenging for the
bound. In that context, exponential-like densities would
correspond to the large nuclear-charge limit of the He
isoelectronic series, which is a weakly correlated system.
With our construction, instead, we use themost challeng-
ing wave function for any given density, finding the unex-
pected trends of Table 1. We also see that the density of a
uniform sphere (droplet) is not particularly challenging
for the bound, a feature that will be further analysed in
Section IV for larger N.

2.2. Absence of amaximising density without
compact support

We now demonstrate that a function ρ(r) that maximises
the functional 	[ρ] for a finite N cannot be a physical
density, unless it has compact support. The argument is
essentially the same used by Lieb and Oxford [2] for N =
1 and N = 2. In terms of the SCE external potential of
Appendix A,

vSCE[ρ](r) ≡ δV SCE
ee [ρ]
δρ(r)

, (24)

and the Hartree potential

vH[ρ](r) ≡ δU [ρ]
δρ(r)

=
∫

dDr′
ρ(r′)

|r − r′| , (25)

we consider the Euler equation for maximising 	[ρ]. By
writing ρ(r) = p(r)2 to ensure ρ(r) � 0, and by varying
p(r), we obtain

{
vSCE[ρ](r) − vH[ρ](r)

ELDA
x [ρ]

− V SCE
ee [ρ] −U [ρ]
ELDA
x [ρ]2

vLDA
x [ρ](r)

}
p(r)

= μ p(r). (26)

If p(r) � 0 everywhere, we obtain the Euler equation

δ	[ρ]
δρ(r)

≡ vSCE[ρ](r) − vH[ρ](r)
ELDA
x [ρ]

− V SCE
ee [ρ] −U [ρ]
ELDA
x [ρ]2

vLDA
x [ρ](r) = μ, (27)
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whereμ is the Lagrangemultiplier ensuring fixed particle
number N = 	dDr ρ(r), and

vLDA
x [ρ](r) ≡ δELDA

x [ρ]
δρ(r)

= −AD

(
1 + 1

D

)
ρ(r)1/D.

(28)

In this case, since vSCE[ρ](r) → N−1
r and vH[ρ](r) → N

r
for r � |r| → �, we have asymptotically

vSCE[ρ](r) − vH[ρ](r) → −1
r

(r → ∞). (29)

Comparing this with Equation (28), we see that a solu-
tion ρ(r) of Equation (27) must display the asymptotic
behaviour

ρ(r) → k1
rD

(r → ∞), (30)

with some constant k1. Such a function is evidently not
normalisable, since with the D-dimensional volume ele-
ment dDr = k2rD − 1dr and a radius R > 0 finite but large
enough, we have∫

|r|≥R
dDr ρ(r) =

∫ ∞

R
dr

k1k2
r

= ∞. (31)

We emphasise that this reasoning also applies to themod-
ified functional

	̃[ρ] = Exc[ρ]
ELDA
x [ρ]

, (32)

where the indirect SCE interaction energy V SCE
ee [ρ] −

U [ρ] is replaced with the functional Exc[ρ] of the
exchange-correlation energy, since the xc potential forN-
electron systems has the same asymptotic behaviour as
Equation (29),

vxc[ρ](r) ≡ δExc[ρ]
δρ(r)

→ −1
r

(r → ∞). (33)

Quite interestingly, a density of exactly the same form
of Equation (30) for the 3D case, but restricted to a finite
region of space (thus set to zero outside some region
r � [R1, R2]), has been considered by Perdew et al. [11]
to study a general feature of GGA approximations related
to the LO bound. Note, however, that if we consider this
kind of densities,ρ(r)�r−3 in r� [R1,R2], even by choos-
ing R1 and R2 very large, we get quite low values for	[ρ],
indicating that the asymptotic condition is anyway not
enough to give a large 	 value (see Table 1).

Even more generally, in a fictitious universe where
the electron–electron repulsion is multiplied by a factor

α � 0, the density functional of their xc energy is given
by

Exc,α[ρ] =
∫ α

0
dβ

{〈
�β[ρ]

∣∣V̂ee
∣∣�β[ρ]

〉 −U [ρ]
}
. (34)

Here, out of all antisymmetric wave functions � that are
associated with the same density ρ, �β[ρ] is the one
that minimises the expectation 〈�|T̂ + βV̂ee|�〉, for any
number β � 0. Since the corresponding α-dependent xc
potential has the asymptotic behaviour

vxc,α[ρ](r) ≡ δExc,α[ρ]
δρ(r)

→ −α

r
(r → ∞), (35)

we conclude that even for the functional

	α[ρ] =
1
α
Exc,α[ρ]
ELDA
x [ρ]

, (36)

the maximising function ρ(r) must have compact sup-
port. Note that 	α=1[ρ] = 	̃[ρ] and limα → �	α[ρ] =
	[ρ].

If p(r)= 0 for |r|� r0, we see that, in principle, a max-
imising density in Equation (26) could exist. However,
with our numerical investigation, we have always found
larger values of 	 for densities with unbounded support.

3. Following the functional gradient of�[ρ]

Although 	[ρ] has no maximising density ρ without
compact support, the functional gradient δ	/δρ tells
us how to increase the value 	[ρ] (or challenge the
Lieb–Oxford bound) systematically. Starting from an
N-electron density ρ = ρ(r) with a high value 	[ρ], we
consider a small density variation,

ρ(r) → ρ(r) + εσ (r),
∫

d3r σ (r) = 0. (37)

Provided that ϵσ (r) is truly ‘small’, which precisely means
that ∫

d3r σ (r)2 = 1 (38)

and |ϵ| � 1, we have

	[ρ + εσ ] − 	[ρ] ≈ ε

∫
d3r G[ρ](r) σ (r), (39)

with the gradient G[ρ](r) � δ	[ρ]/δρ(r) given by Equa-
tion (27). Although 	d3r σ (r) = 0, the right-hand side
of Equation (39) can nevertheless be >0, provided that
G[ρ](r), as a function of r, is different from a constant,
G[ρ](r) � const.
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3.1. Formal optimisation of the increment

Formally, maximising the integral 	d3r G[ρ](r)σ (r) with
respect to σ (r) subject to the two constraints 	d3r σ (r)=
0 and 	d3r σ (r)2 = 1,

δ

δσ (r)

{ ∫
d3r G[ρ](r)σ (r) − μ1

∫
d3r σ (r)

− μ2

∫
d3r σ (r)2

}
= 0, (40)

yields the Euler Equation G[ρ](r) − μ1 − 2μ2σ (r) = 0,
with the solution

σ0(r) = G[ρ](r) − μ1

2μ2
. (41)

The first Lagrange multiplier μ1 is fixed by the normal-
isation constraint 	d3r σ 0(r) = 0. The second one μ2
is absorbed in the small parameter ϵ, guaranteeing the
validity of the approximation (39). [Independently, small-
ness of ϵσ (r) is necessary (but not sufficient) for the
resulting density to be non-negative, ρ(r) + ϵσ (r) � 0
for all r.]

For a N-electron (finite) density ρ, Equations (27)–
(29) imply the large-r behaviour (r → �)

G[ρ](r) → 1
|ELDA

x [ρ]|
[
1
r

− 	[ρ]AD

(
1 + 1

D

)
ρ(r)1/D

]
.

(42)

Necessarily, σ 0(r) → 0 for r → �, implying μ1 = 0 in
Equation (41). Consequently, due to the term 1/r in Equa-
tion (42), 	d3r σ 0(r) cannot be zero (or even finite). In
other words, ρ(r) + ϵσ 0(r), with ϵ� 0, must, again, yield
a density with compact support. In the following, we give
an analytical example for the case of a density with com-
pact support.

3.2. Analytical example for densities with compact
support

As an example, we evaluate Equation (41) for the spheri-
cal two-electron density [24]

ρ(r) =
{

ρ0 (r ≤ R),

0 (r > R)
ρ0 = 3

2πR3 . (43)

This density corresponds to a uniformly charged sphere
(droplet) with radius R and total charge 2,

U [ρ] = 12
5R

, vH[ρ](r) = 3R2 − r2

R3 (r ≤ R).

(44)

The exact exchange energy Ex[ρ] is given by −Ex[ρ] =
1
2U [ρ] = 1.2

R , while [24]

− ELDA
x [ρ] = 1.1545

R
, (45)

vLDA
x [ρ](r) = −

(
9

2π2

)1/3 1
R

(r ≤ R). (46)

From [24], we have	[ρ]= 1.498 and the SCE co-motion
function (see Appendix A) is

f (r) = R
(
1 − r3

R3

)1/3
. (47)

The resulting SCE external potential is given by

vSCE[ρ](r) = vSCE[ρ](0) −
∫ r

0

du
[u + f (u)]2

= vSCE[ρ](0) − 1
R

∫ r/R

0

dx
[x + (1 − x3)1/3]2

. (48)

Eventually, Equation (41) reads

σ (r) = −vSCE[ρ](r) + vH[ρ](r) − μ̃1

2μ̃2
, (49)

where μ̃1 = μ1 − 	[ρ]vLDA
x (note that vLDA

x does not
depend on r in the present example) and 2μ̃2 =
−ELDA

x [ρ]2μ2 > 0. The constant vSCE[ρ](0) can also be
absorbed by the multiplier μ̃1 which is fixed by the con-
dition

∫ R
0 dr 4πr2σ (r) = 0. Then, we have

σ (r) = 1
2μ̃2R

{
3 − r2

R2 − μ̃1 +
∫ r/R

0

dx
[x + (1 − x3)1/3]2

}
.

(50)

A simple but accurate approximation to this function (for
R = 1) is

σappr(r) = 1
2μ̃2

[
0.4r3 − 1.85r2 + r + 0.16

]
r ≤ 1.

(51)

We therefore consider the densities (for r � 1)

ρa(r) = ρ0 + a
[
0.4r3 − 1.85r2 + r + 0.16

]
(a ≥ 0)

(52)

to obtain the values 	[ρ0.2] = 1.521, 	[ρ0.5] = 1.551,
	[ρ1.0] = 1.590, 	[ρ1.5] = 1.611, 	[ρ1.6] = 1.612. [For
a > 1.6, the density ρa(r) becomes negative.]
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3.3. Compromise for N-representability for densities
with unbounded support

Since we observe higher values of 	[ρ] for densities for
which p(r) � 0 everywhere, we consider here a com-
promise to follow the gradient of 	[ρ] without violating
N-representability. We perturb the density with some
function σ (r) in Equation (37) that depends on a certain
number of parameters and satisfies Equations (37) and
(38), keeping the perturbed densityN-representable with
suitable constraints. One can then choose the parameter
values in order to maximise the overlap with the gradient
[the right-hand-side of Equation (39)].

As an example, we start from the 3D exponential two-
electron density (D = 3, N = 2)

ρ(r) = e−r

4π
, (53)

which already gives the high value 	[ρ] = 1.69905 (see
Table 1). We choose for σ (r) the parametrised form

σa(r) =
√
3a3

π

(
1 − ar

3

)
e−ar (a > 0), (54)

which obeys the conditions 	d3r σ a(r) = 0 and
	d3r σ a(r)2 = 1 for all values of the parameter a > 0,
so that the function ρa, ϵ(r) = ρ(r) + ϵσ a(r) is always
correctly normalised. In addition, N-representability
requires that ρa, ϵ(r) � 0 for all r � 0. For any value of a,
this is fulfilled for ϵmin(a) � ϵ� ϵmax(a), where ϵmin(a) �
0 and ϵmax(a) � 0 are given by

εmin(a) =

⎧⎪⎨⎪⎩
3(a − 1)
4a

√
3a3π

e−(3−4a)/a (0 < a ≤ 3
4
),

− 1
4
√
3a3π

(a ≥ 3
4
),

(55)

εmax(a) =
⎧⎨⎩ 0 (0 < a ≤ 1),

3(a − 1)
4a

√
3a3π

e−(3−4a)/a (a ≥ 1). (56)

Evaluating numerically the functional gradient
G[ρ](r) � δ	[ρ]/δρ(r) of Equation (27) for the density
ρ(r) = ρ(r) of Equation (53), we consider, as a function
of a, the overlap integral

I(a) =
∫ ∞

0
dr(4πr2)G[ρ](r) σa(r). (57)

For any value of a > 0, the maximum possible value in
Equation (39) is approximately (if the first-order expan-
sion holds)

	
[
ρ + ε(a)σa

] − 	[ρ] ≈ ε(a) I(a), (58)

Table . Exact values 	[ρ + εσa2 ] for various values of ϵ < ,
compared with the first-order expansion (see Section .).

ϵ 	[ρ + εσa2
] 	[ρ]+ ϵI(a)

 . .
−. . .
−. . .
−. . .
−. . .

where ϵ(a)= ϵmax(a)� 0 for I(a)� 0 and ϵ(a)= ϵmin(a)�
0 for I(a) � 0.

Numerically, I(a) > 0 for 0 < a < 1 and I(a) < 0 for a
> 1, with a strong maximum I(a1) 
 2.9267 · 4π at a1 

0.079 and a weak minimum I(a2) 
 −0.01479 · 4π =
−0.2302 at a2 
 2.49. While ϵ(a1) = 0, we have ϵ(a2) =
−0.0207, and Equation (58) for a = a2 gives

	
[
ρ + ε(a2)σa2

] − 	[ρ] ≈ 0.004765. (59)

In Table 2, we report the values of 	[ρ + εσa2 ] as a func-
tion of ϵ and compare them with the ones from the first-
order expansion. As predicted, we see that	[ρ] increases
for small ϵ. However, the first-order expansion breaks
down before ϵ(a2), so that the maximum value of 	[ρ]
that we obtain is less than the one predicted by Equa-
tion (59). The improvement in this case is very small, but
we suspect that this is due to the fact that for N = 2, the
exact λ̄3(2) is very close to 1.701, so that we are really
hitting the boundary. In fact, in the previous example of
Section 3.2, we have seen that when we start from amuch
less optimal density, the improvement in 	[ρ] with our
procedure is much larger.

We have also repeated the procedure using as a starting
density the one corresponding to ϵ = −0.02 in Table 2,
but we could only slightly improve the result obtaining
	[ρ] = 1.701052, which is, so far, our best value,

λ̄3(2) > 1.701052. (60)

4. Is a uniform density themost challenging for
the Lieb–Oxford bound?

In [18], it has been argued that the tightest bound should
correspond to the case of the uniform electron gas at
extremely low density (equivalent to the SCE limit for a
uniform density). This suggestion was made by consider-
ing electronic Hamiltonians of the form (1) with partic-
ularly challenging v(r), keeping in mind that the bound
increases [2] with the number of electrons N (see Equa-
tion (16)).

With our formalism, we directly consider the most
challenging wave function (or one which is very close to
it, thus providing anyway a lower bound for 	[ρ]) for
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Table . For different values of N, we compare the	[ρ] obtained
from atomic densities (values from []) with the ones obtained
from spherical droplets of uniform density (values from []).

N 	[ρ] atomic 	[ρ] droplet

 . .
 . .
 . .
 . .
 . .

Figure . Values of 	[ρ] for the fixed density profile ρ(r)�r/e−r

compared with those for spheres of uniform density (droplets) as
a function of the particle number N. The values for ρ(r)�r/e−r

are significantly higher than those for uniform densities. The size
extrapolation for uniformdensities is also shown,where the fitting
parameters are a= ., b= −., c= −..

each given density, and we can thus question whether a
uniform density profile is really the most challenging for
the bound. Already by putting together existing data, we
can compare, in Table 3, the values of	[ρ] obtained from
the (sphericalised) atomic densities of Li, Be, C, B, and
Ne [21], with the ones obtained from spheres of uniform
density (droplets) [24]: we clearly see that the atomic den-
sities yield significantly higher values of 	[ρ], as already
observed for N = 2 in Table 1.

We have also performed calculations with the fixed
spherical density profile ρ(r)�r1/2e−r, which was partic-
ularly promising forN= 2 (see Table 1), for particle num-
bers N � 60, and compared the values with the ones for
spheres of uniform density, extending the calculations of
[24] up to N = 60. The results are reported in Figure 1,
where we clearly see that the uniform droplets give values
significantly lower for 	[ρ]. This suggests that a similar
behaviour may arise in the limit N → �: a density with
particular modulations might challenge the bound more
than the uniform one.

Our new value for the uniform sphere at N = 60, 	 =
1.818 sets an improved upper bound [3], equal to−1.343,
for the low-density uniform electron gas indirect energy

per particle w, which, then, must be between

− 1.45 ≤ w ≤ −1.343, (61)

where the lower bound −1.45 has been proven in [25].
We have also performed a size extrapolation of our 	[ρ]
for the droplets of uniform density of Figure 1, by fitting
our data to a liquid-drop model expansion

	unif [N] = a + bN−1/3 + c N−2/3, (62)

finding a = 1.918, b = −0.3253, and c = −0.2791. The
fitting function is also shown in Figure 1. The value of
the fitted parameter a gives ourN→ � extrapolation for
	[ρ] in the uniform electron gas,	unif[N→ �]= 1.918.
This value can be comparedwith the one obtained by tak-
ing the rs → � limit of popular LDA parametrisations:
for example, the PW92 [26] parametrisation yields 1.947
at zero polarisation and 1.977 for the fully polarised case,
while the VWN [27] at zero polarisations gives 1.9043.

After Lewin andLieb [3] showed that the value 1.955=
1.4442/A3 does not correspond to an indirect energy, our
value 	[ρ] = 1.91175 for N = 60 and spherically sym-
metric density profile ρ(r)�r1/2e−r is the highest value
of λ3[�] ever observed, setting a new lower bound for
λ̄3(N) for any N, so that, rigorously

1.91175 ≤ λ̄3 ≤ 2.215, (63)

or, in terms of the constant C3 in Equation (9)

1.4119 ≤ C3 ≤ 1.6358. (64)

5. Conclusions and perspectives

We have developed a method to maximally challenge the
Lieb–Oxford bound, using optimal (or nearly optimal)
trial wave functions that can be constructed from a given
density. This allows us to rewrite the most challenging
bound for a given number of particles directly as a density
functional. As a first application of the method,

� we improved (see Equation (60)) the constant in the
LO bound for N = 2, which provides a constraint to
develop new metaGGA functionals [12];

� we have given an improved lower bound for the con-
stant appearing in the LO inequality valid for all par-
ticle numbers N (see Equations (63) and (64));

� we have obtained an improved upper bound for the
indirect energy per particle of the low-density uni-
form electron gas (see Equation (61)).

In future works, we will analyse systematically the bound
for larger particle numbers N, trying to give improved
lower bounds for λ̄D(N) and for λ̄D.
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More generally, from this study, we have learned that it
is quite difficult to predict which densities will maximally
challenge the bound (see for example, Table 1: the trends
reported there seem totally unpredictable). For sure, we
observe that, for finite N, a uniform density is not the
one that challenges the bound the most, suggesting that
the indirect energy of the uniform gas at low density may
not provide the tightest bound, contrary to what was pre-
viously suggested.
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Appendix 1. Strictly correlated electrons

The minimising antisymmetric wave function � =
�KS[ρ] in the definition of the density functional of the
non-interacting kinetic energy [28],

Ts[ρ] = min
�→ρ

〈�|T̂ |�〉, (A1)

is usually a Slater determinant of Kohn–Sham orbitals. In
contrast, the minimising one in

V SCE
ee [ρ] = min

�→ρ
〈�|V̂ee|�〉 (A2)

is (or it is very close to) a state � = �SCE[ρ] with strictly
correlated electrons (SCE). �SCE[ρ] is not a regular wave
function but a Dirac-type distribution. Its position repre-
sentation is singular,

�SCE[ρ](r1σ1, . . . , rNσN ) = 0 for (r1, . . . , rN ) /∈ �0[ρ].
(A3)
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Here,�0[ρ] is aD-dimensional subspace of the (N×D)-
dimensional configuration space of the N-electron sys-
tem, given by

�0[ρ] = {(s, f2(s), . . . , fN (s))|s ∈ Sρ ⊂ R
D}, (A4)

where Sρ = {r ∈ R
D | ρ(r) �= 0} is the spatial region of

non-zero density. f1(s) � s, f2(s),… , fN(s) are co-motion
functions: In an SCE state, a configuration (r1,… , rN) is
observable only when its N positions obey the relations,
rn = fn(r1), n= 2,… ,N. Then, the distance between elec-
trons i and j is |fi(s) − fj(s)|, fixed by the position r1 = s
of electron 1. Consequently, we have

V SCE
ee [ρ] =

∫
dDs

ρ(s)
N

N−1∑
i=1

N∑
j=i+1

1
|fi(s) − f j(s)| . (A5)

This is truly a density functional, since the co-motion
functions are fixed by the density, fn(s) = fn[ρ](s). For
a large class of densities ρ, the functions fn[ρ](s) and
thus the functional V SCE

ee [ρ] can be evaluated rigor-
ously [19,21–23]. Its functional derivative turns out to be
[29,30]

δV SCE
ee [ρ]
δρ(r)

= vSCE[ρ](r), (A6)

with the SCE external potential vSCE[ρ](r), fixed by

∇vSCE[ρ](r) = −
N∑

n=2

r − fn(r)
|r − fn(r)|3 . (A7)

As usual, the functional derivative is determined up to a
constant, which for finite systems we fix by requiring that
the potential vanishes at infinity.

For example, a spherical two-electron density ρ(r) =
ρ(r) in D dimensional space has the co-motion function
[19,23]

f2(s) = − f (s)
s
|s| . (A8)

In terms of the invertible function

Ne(s) ≡
∫

|r|≤s
dDr ρ(r), (A9)

the radial co-motion function is given by

f (s) = N−1
e

(
2 − Ne(s)

)
. (A10)

Equation (A8) implies that |r − f2(r)| = r + f(r) and, due
to Equation (A5),

V SCE
ee [ρ] = 1

2

∫
dDr

ρ(r)
r + f (r)

. (A11)

Due to Equation (A7), the SCE external potential, with
vSCE → 0 for r → �, is

vSCE[ρ](r) =
∫ ∞

r

ds
[s + f (s)]2

. (A12)

For any N-electron density ρ(r) with co-motion func-
tions fn(r) (n = 2,… , N), we may consider the continu-
ous series of scaledN-electron densities ρξ (r)= ξDρ(ξr),
with ξ > 0 and 	dDr ρξ (r) = 	dDr ρ(r) = N. The co-
motion functions f (ξ )

n (r) of ρξ (r) are given by

f (ξ )
n (r) = 1

ξ
fn(ξr). (A13)

Therefore, the functional (A5) has the simple scaling
property

V SCE
ee [ρξ ] = ξV SCE

ee [ρ]. (A14)

We should remark that the SCE wave function as a
minimiser for the electron–electron interaction energy
has been first conjectured on physical grounds [19,21]. In
recent years, it was recognised that the problem posed by
the minimisation (A2) is equivalent to an optimal trans-
port problem with Coulomb cost [23,31]. Since then, the
optimal transport community has produced several rig-
orous results. In particular, the SCE state has been proven
to be the true minimiser for any N in 1D [22] and in any
dimension for N = 2 [23]. For more general cases, it has
been shown that the minimiser might not be of the SCE
form [32]. Even in that case, however, SCE-like solutions
seem to be able to go very close to the trueminimum [33].
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