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Interpolated energy densities, correlation
indicators and lower bounds from approximations
to the strong coupling limit of DFT
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Paola Gori-Giorgi*a

We investigate the construction of approximated exchange–correlation functionals by interpolating

locally along the adiabatic connection between the weak- and the strong-coupling regimes, focussing

on the effect of using approximate functionals for the strong-coupling energy densities. The gauge

problem is avoided by dealing with quantities that are all locally defined in the same way. Using exact

ingredients at weak coupling we are able to isolate the error coming from the approximations at strong

coupling only. We find that the nonlocal radius model, which retains some of the non-locality of the

exact strong-coupling regime, yields very satisfactory results. We also use interpolation models and

quantities from the weak- and strong-coupling regimes to define a correlation-type indicator and a

lower bound to the exact exchange–correlation energy. Open problems, related to the nature of the

local and global slope of the adiabatic connection at weak coupling, are also discussed.

I. Introduction

Kohn–Sham Density Functional Theory (KS DFT)1 is the most
widely used electronic structure method on account of its
relatively low computational cost combined with an accuracy
often rivalling that of much more expensive wavefunction-based
methods. The success of KS DFT in any given application is
however dependent on the quality of the approximation chosen
to account for exchange–correlation (XC) effects. Since the original
work of Kohn & Sham,1 a wide range of functionals have been
constructed to approximate the XC energy from local and semi-
local quantities; in many cases, such XC functionals are suffi-
ciently accurate that KS DFT may be used as a predictive tool in
quantum chemistry. However there remain cases for which none
of the presently available XC functionals provide an adequate
approximation; an important example of this failure is in the
treatment of strong correlation, commonly arising in systems
exhibiting near-degeneracy.2–5 The development of XC functionals
that also perform well in challenging situations, such as bond
dissociation, is essential to broaden the applications for which KS
DFT works as a predictive tool.

In the previous work,6 the construction of XC functionals able
to treat strong and weak correlation effects with comparable
accuracy has been explored through the approach of interpolating
the local adiabatic connection (AC) between the weakly-interacting
and strongly-interacting limits. It was observed6 that the inclusion
of both these limits offered a significant improvement in the
treatment of strong (static) correlation without compromising
the treatment of dynamical correlation. The accuracy of such
interpolation schemes depends on two factors: the accuracy of
the interpolation input parameters and the quality of the inter-
polation model itself. In the previous study,6 interpolation
models were tested with input parameters that had been computed
to high accuracy, such that the quality of the model and the merits
of interpolating the local (i.e., at each point of space) AC as opposed
to the global (i.e., integrated over all space) AC could be assessed
objectively. It was found6 that the local AC interpolation generally
yields more accurate XC energies than the global AC interpolation,
for which these models were originally designed,6–8 and are also
more amenable to the construction of size consistent methods.

An essential consideration in the design of these local inter-
polation schemes6 is the necessity to define all input quantities
within a common gauge. In contrast to global energies, local
energy densities can differ by an arbitrary combination of
spatial functions, since if their global integral is zero, the same
total energy is obtained. In both the preceding and the present
work, all quantities are defined within the gauge of the electro-
static potential of the XC hole,9–12 namely the exchange energy
density, slope of the local AC at the non-interacting limit and
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the XC energy density at the strongly-interacting limit.6

Additionally, an approximation to the local initial slope of the
AC has recently been derived; this approximation is a function
of the occupied and virtual KS orbitals; it is in the same gauge
as the exchange energy density, and is exact for two-electron
systems.6

The structure of the exact strong coupling limit energy
densities12,13 provided by the strictly-correlated electrons (SCE)
theory14–16 is considerably different from that of the two input
ingredients at weak correlation. Even though several authors
have proposed different algorithms to compute them,13,17–19

the SCE energy densities are still too expensive to compute
and indeed are presently only available for relatively small
systems.12,13 It would seem therefore that, regardless of how
well the local interpolation models perform, the computational
hurdles of the SCE energy density precludes this approach from
general use in DFT calculations. In the present work, means of
overcoming this limitation are considered in the form of
practical approximations to the energy densities in the strongly
interacting limit, and the performance of the local interpolation
models with the exact SCE quantities replaced with approximations
is investigated. For this purpose, the well-established point-charge
plus continuum (PC) model20 and the more recent nonlocal radius
(NLR) model21 are examined.

In addition to this, we use the interpolation approach to
construct two quantities useful in the development of new XC
functionals: a local indicator for the level of static correlation
present, and a lower bound to the correlation energy that is
tighter than those previously proposed.22,23

II. Theoretical background
A. The adiabatic connection

In this section we briefly review the adiabatic connection (AC)
formalism24–27 and the quantities it defines in both global and
local terms. The AC defines a link between the non-interacting
KS auxiliary system and the physically-interacting system,
comprising the ground state wavefunctions of the general
Hamiltonian

Ĥl ¼ T̂ þ lŴ þ
X
i

vl rið Þ; (1)

in which the electron interaction Ŵ is scaled by a coupling
constant l and the one-body potential vl varies such that the
density is equal to that of the fully interacting system, rl=1, for
all l A R. Using the AC approach, we have an exact expression
for the XC energy25,27

EXC½r� ¼
ð1
0

Wl½r�dl; (2)

where Wl½r� is the global AC integrand,

Wl½r� ¼ Cl½r� Ŵ
�� ��Cl½r�

� �
�U½r�; (3)

in which Cl[r] is the ground state wavefunction of Ĥl and U[r]
the Hartree (Coulomb) energy.

The global AC has been extensively studied and used to
guide the construction of approximate XC functionals.28–34 The
first such functional was that proposed by Becke,35 based on a
model of the global AC, and many more have been developed
since.7,16,36–38 Most pertinent to the present work are those based
on an interpolation of some form between the non-interacting
and the strongly-interacting limits of the AC. The primary model
of this class is the interaction strength interpolation (ISI)
proposed by Seidl and co-workers7,8 and later revised in ref. 16.

The expression for the XC energy given in eqn (2) may be
equivalently written as the spatial integral of a local quantity,

EXC½r� ¼
ð1
0

dl
ð
rðrÞwlðrÞdr (4)

in which wl(r) is the energy density at coupling constant l.
As discussed in Section I, local quantities such as this are not
uniquely defined hence any local interpolation scheme is only
meaningful if constructed from quantities defined within the
same gauge, which in this case is chosen to be that of the XC
hole, defined as

wlðrÞ ¼
1

2

ð
hlXCðr; r0Þ
jr� r0j dr

0; (5)

where hl
XC(r,r0) is the XC hole,

hlXCðr; r0Þ ¼
Pl
2ðr; r0Þ
rðrÞ � rðr0Þ: (6)

The pair-density Pl
2(r,r0) provides the link between the XC hole

and the wavefunction Cl[r] of eqn (3) through the definition

Pl
2ðr; r0Þ ¼ NðN � 1Þ

�
X

s1;...;sN

ð
Cl rs1; r0s2; . . . ; rNsNð Þj j2dr3; . . . ; drN :

(7)

The energy density may be locally integrated with respect to l to
give the coupling-constant averaged (CCA) energy density,

�wXCðrÞ ¼
ð1
0

wlðrÞdl; (8)

in terms of which the XC energy may be written as

EXC½r� ¼
ð

�wXCðrÞrðrÞdr: (9)

B. AC interpolation models

In the previous study, the CCA energy density %wXC(r) was
approximated by interpolation models with near-exact quanti-
ties from the non-interacting and strongly-interacting limits.6

As set out in Section I, these must be substituted by computa-
tionally inexpensive approximations for such an approach to
yield practical density functional approximations (DFAs); this
work assesses the suitability of several approximations to
quantities in the strongly-interacting limit.

The interpolation models considered in this study are those
which showed promise in prior work,6 namely the model of
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Seidl, Perdew and Levy (SPL),7 the simplified model of Liu and
Burke (LB)38 and the Padé[1/1] form,36,39 all of which are
summarized in Appendix A for reference. Each requires three

input quantities: W0½r�, W0
0 ½r� and W1½r� for global inter-

polation, w0(r), w0
0(r) and wN(r) for local interpolation. It is

important to note that whilst both WLB
l and WSPL

l exhibit the
correct behaviour in both the l - 040 and l - N

16 limits, the
corresponding Padé[1/1] model does not in the l - N limit.

In addition to these models, the following two-legged
representation6,41 is also considered:

wlðrÞ ¼
w0ðrÞ þ lw0

0 ðrÞ; l � xcorr

w1ðrÞ; l4xcorr

8<
: (10a)

xcorr ¼
w1ðrÞ � w0ðrÞ

w0
0 ðrÞ : (10b)

At the non-interacting limit, these models reduce simply to the
exact exchange energy density w0(r), a key ingredient in local
hybrids. The local initial slope w0

0(r) has been studied in ref. 6
and 42, whilst the energy density at the strongly-interacting
limit wN(r)6,12,13 is discussed in the following subsection.

C. SCE energy densities

The SCE theory14–16 provides the framework in which exact
global and local quantities can be obtained in the l-N limit.
The SCE energy density, in the gauge of the electrostatic
potential of the XC hole, is given by6,12,13

w1ðrÞ ¼
1

2

XN
k¼2

1

r� fkðrÞj j �
1

2
vHðrÞ; (11)

where vH(r) is the Hartree potential and fk(r) are the co-motion
functions.12,15,16 The co-motion functions parametrize the
square of the CN[r] wave function, which approaches a classical
distribution in this limit.12,15,16 For a given electron in the SCE
system at position r, the positions of the other electrons will be
determined by fk(r), which requires that several relations are
satisfied as detailed in ref. 12 and 15.

Due to the computational difficulties associated with the co-
motion functions, SCE energy densities are only relatively easily
computed for 1D43 and spherically symmetric systems.12,15 To
compute the SCE energy density for general 3D systems, one
can invoke the dual Kantorovich SCE formulation,13 however
computational cost still imposes a practical limitation on its use.

In considering approximations to the SCE energy density for
use in local interpolation, there are several important properties
to examine. The most important of these is that any such
approximation must be defined in the gauge of the XC hole.
Additionally models that give a reasonably accurate representa-
tion of the SCE energy densities, in particular having the correct

asymptotic decay w1ðrÞ ! �
1

2jrj as jrj ! 1
� �

, are more

favourable. It is important to note however that more accurate
W1½r� and wN(r) do not necessarily result in a more accurately
approximated %wXC(r). This can occur where errors arising from

inadequacies of the interpolation model partially cancel errors
in the approximate input quantity, leading to a more accurate
overall approximation. This will be further discussed in the
following sections.

D. NLR and PC energy densities

In this subsection the approximations to the SCE functional
used in this work, the NLR21 and PC20 models, are introduced
and their respective properties discussed.

The NLR functional has a non-local structure, inspired by
the exact SCE functional,12 with the model XC hole21

hNLR
XC (r,r0) = �r(r0)y(rNLR(r) � |r � r0|), (12)

where y(x) is the step function

yðxÞ ¼
0 xo 0

1 x � 0

(
(13)

and rNLR(r) is the nonlocal radius. Wagner and Gori-Giorgi
defined rNLR(r) by generalizing the Wigner–Seitz radius rs to
nonuniform densities,21 satisfying the relationð

rðr0Þy rNLRðrÞ � r� r0j jð Þdr0 ¼ 1; (14)

thus defining rNLR(r) as the radius of a sphere containing one
electron. This can equivalently be written as an integral over
O(r), the volume of a sphere centred at r and with radius rNLR(r),ð

OðrÞ
rðr0Þdr0 ¼ 1: (15)

For systems with uniform densities, rNLR(r) simply reduces to
the Wigner–Seitz radius; a local function depending only on the
density as rs(r) = [3/(4pr(r))]1/3. For nonuniform systems, rNLR(r)
encodes nonlocal information, as it depends on the density at
all the points in the sphere centred at r and with radius rNLR(r).

From the model XC hole in eqn (12), it can be shown21 that
the NLR energy density can be expressed as

wNLR
1 ðrÞ ¼ �1

2

ð
OðrÞ

rðr0Þ
r� r0j jdr

0 (16)

and thus the global equivalent WNLR
1 ½r� is given by21

WNLR
1 ðrÞ ¼ �1

2

ðð
OðrÞ

rðrÞrðr0Þ
r� r0j j dr

0dr: (17)

The NLR functional has been implemented in the GAUSSIAN
44

and TURBOMOLE
45 electronic structure packages.46,47 Very recently,

the NLR model has been also refined and improved by Bahman,
Zhou & Ernzerhof,48 with the addition of a shell of positive charge
density, which is again inspired by the exact12 SCE XC hole. The
same authors have also shown how to implement both the
original NLR model and their new shell model in a very efficient
way.48

The other approximation for quantities in the strongly-
interacting limit considered here is the PC model of Seidl
and coworkers, in which l - N quantities are modelled at a
semilocal level.20 This approximation was developed before
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many results on the exact SCE functional were available12,15,49

and, in contrast to the NLR approximation, does not model the
XC hole directly. Detailed analysis does however show that the
PC model, at least in its local density version of eqn (18), yields
energy densities corresponding to the electrostatic potential
of the XC hole,12 thus making them suitable for use in local
interpolation schemes. Truncating the PC model at the LDA
level leads to an energy density expressed as

wPC-LDA
1 ðrÞ ¼ � 9

10

4p
3

� �1=3

rðrÞ1=3; (18)

whilst truncating at the GGA level gives the energy density,

wPC-GGA
1 ðrÞ ¼ wPC-LDA

1 ðrÞ

þ 3

350

3

4p

� �1=3jrrðrÞj2
rðrÞ7=3 :

(19)

In Fig. 1, the difference between wN(r) computed with
the SCE theory and its approximate forms are plotted for the
helium atom. It is evident that the NLR energy density is the
most faithful to the SCE reference of the three, whilst the two
PC forms present a slightly more nuanced picture. At the global

level, the PC-GGA approximation appears to have an accuracy
superior even to that of the NLR model, with the PC-LDA
approximation yielding the greatest error by a considerable
margin. However examination of the errors in the energy
densities themselves reveals that the PC-GGA energy density
exhibits a highly unphysical asymptotic decay, compared to the
broadly reasonable asymptotic decay of the NLR and PC-LDA
energy densities, suggesting that its apparent accuracy at the
global level is largely the product of error cancellation.12

Given the definition of the XC hole in eqn (6), and by virtue
of the XC hole sum rule

ð
hlXCðr; r0Þdr0 ¼ �1; (20)

it can be seen that wlðrÞ ! �
1

2jrj as jrj ! 1, for any given l.12

By virtue of eqn (15) and (16), the NLR energy density will
exhibit the correct asymptotic behaviour. However, it is apparent
from eqn (18) and (19) that this will not be the case for the PC
model energy densities.

In Fig. 2 the SCE, NLR, PC-LDA and PC-GGA energy densities
are plotted for the Ne6+ ion (an example pertinent to later
discussion). It can be seen that, as in the case of the beryllium
atom discussed in ref. 21, the NLR energy density lies above the
SCE energy density in the core region and below in the valence
region.21 Additionally, it can be seen that the PC-GGA and
PC-LDA energy densities have the predicted unphysical asymp-
totic behaviour, with the former even becoming positive at
long range.

This failing can present a challenge to the use of the PC models
in local interpolation schemes as it causes both wPC-LDA

N (r) and
wPC-GGA
N (r) to intersect w0(r). In the local SPL and LB schemes, the

interpolated wl(r) would have a non-zero imaginary component
and thus be unphysical in regions where wN(r) 4 w0(r) as these
models assume that wl(r) monotonically decreases in l. In contrast
to the global AC, the monotonicity of the local AC (in the gauge
of the XC hole) has not been formally proven; its assumption in
these models is rationalised by the absence of known antithetic
examples in Coulombic systems.6,42 For practical purposes,

Fig. 1 Upper panel: Plots of the difference between the exact and
approximate strong coupling limit energy density for the helium atom,
dwN(r) = wN(r) � wmodel

N (r), with respect to the distance from the nucleus,
r/a.u. Lower panel: The quantity from the top panel multiplied by the
density and spherical volume element.

Fig. 2 The wN(r) energy densities in the Ne6+ ion obtained by the
following functionals: SCE, NLR, PC-LDA and PC-GGA.
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the interpolation schemes were slightly adapted when using
PC model approximations such that wl(r) - w0(r) where
wN(r) 4 w0(r).

III. Computational details

In this work, the Lieb maximization algorithm of ref. 32 and 33
has been employed to compute accurate energy densities wl(r)
for l = 0 and for a range of l { 1, from which w0

0(r) is
numerically calculated by finite difference. Additionally, CCA
energy densities %wXC(r) are computed to provide accurate
reference correlation energy densities.6,42 The Lieb functional
at interaction strength l is given by50

Fl½r� ¼ sup
v

El½v� �
ð
vðrÞrðrÞdr

� �
; (21)

in which El[v] is the energy yielded by a given electronic
structure theory at potential v(r), shown by Lieb to be the
conjugate to the Lieb functional,

El½v� ¼ inf
r

Fl½r� þ
ð
vðrÞrðrÞdr

� �
: (22)

In the density-fixed AC formalism, the density is constrained
to be equal to the l = 1 density for all l by the optimizing
potential v(r). In this work, the potential is parameterized using
the method of Wu and Yang (WY)29 as

vðrÞ ¼ vextðrÞ þ ð1� lÞvrefðrÞ þ
X
t

btgtðrÞ; (23)

in which vext(r) is the external potential due to the nuclei, vref(r)
a fixed reference potential which ensures the correct asymptotic
behaviour of v(r) and { gt} a set of Gaussian functions with {bt}
their coefficients. Here, the Fermi–Amaldi potential51 is used as
the reference potential and the set of Gaussian functions { gt} is
chosen to be the same as the orbital basis set, thus the Lieb
functional is optimized with respect to the coefficients of the
potential basis functions {bt}.

As in the preceding study,6 Lieb maximisation calculations
in this work were effected using the implementation of ref. 32
and 33 in a development version of the DALTON quantum
chemistry package,52 with the full configuration-interaction
(FCI) and coupled-cluster singles and doubles (CCSD)53 methods
being used to compute El[v]. All calculations of two-electron
systems and those of LiH were performed with a FCI wave
function, whilst the remaining systems were treated at the

CCSD level. Additionally, the uncontracted aug-cc-pCVTZ basis
set was selected as the orbital and potential basis set for all
systems excluding LiH, for which the uncontracted cc-pVDZ
basis was used instead.54,55

To compute SCE quantities for the atomic systems considered
here, co-motion functions are obtained by using the conjectured
SCE solution for spherically symmetric systems,15 yielding either
exact or very accurate energy densities.56,57 For the H2 molecule,
the SCE energy densities were computed via the dual Kantorovich
SCE formulation,49,58 described in ref. 13. The key quantity
necessary in the evaluation of the NLR energy densities is the
NLR radius rNLR(r), which was computed using the method
described in ref. 21. The PBE59 and FCI dissociation curves
for the hydrogen molecule were calculated using the DALTON

quantum chemistry package.52

IV. Results

In this section, atomic correlation energies and H2 dissociation
curves computed using local interpolation models are presented,
comparing the results obtained when using the SCE theory to
model the strongly-interacting energy densities to those obtained
using its NLR and PC approximations. As set-out earlier, the
accurate data for the non-interacting energy density and the local
initial slope6 is used in the present evaluation of interpolation
functionals as this allows the effect of substituting the SCE energy
density with an approximation to be explicitly observed.

We also report results on the LiH dissociation curve, in this
case using always the NLR approximation for the energy densities
in the strong correlation limit, comparing and rationalizing the
performance of global and local interpolations.

A. Atomic correlation energies

The correlation energies of several atomic/ionic systems
computed with the SPL and LB interpolation schemes and with
the SCE, NLR and PC models providing the l - N quantities
are presented for global interpolation in Table 1 and local
interpolation in Table 2. Among these systems are two that
are typically poorly described by contemporary DFAs; these are
the H� ion, generally not predicted to be bound60 and the Ne6+

ion which belongs to the beryllium isoelectronic series, a series
exhibiting strong near-degeneracy effects with increasing nuclear
charge Z.6,28

It is evident from Tables 1 and 2 that the local inter-
polation gives always a lower mean absolute error (MAE) than

Table 1 The atomic (ionic) correlation energies in Hartree atomic units obtained by the global SPL and LB interpolation with the exact (SCE) and
approximate (NLR, PC-LDA and PC-GGA) W1 interpolation quantities

Species Eref
c SPL SCE SPL NLR SPL PC-GGA SPL PC-LDA LB SCE LB NLR LB PC-GGA LB PC-LDA

H� �0.0409 �0.0368 �0.0352 �0.0360 �0.0415 �0.0399 �0.0383 �0.0391 �0.0444
He �0.0400 �0.0381 �0.0371 �0.0376 �0.0401 �0.0396 �0.0388 �0.0392 �0.0413
Be �0.0920 �0.1049 �0.1025 �0.1042 �0.1095 �0.0925 �0.1071 �0.1085 �0.1128
Ne6+ �0.1833 �0.2447 �0.2399 �0.2435 �0.2527 �0.2526 �0.2487 �0.2517 �0.2590
Ne �0.3470 �0.3940 �0.3840 �0.3940 �0.4010 �0.4050 �0.3970 �0.4050 �0.4100
Ar �0.4040 �0.4880 �0.4810 �0.4880 �0.4910 �0.4940 �0.4890 �0.4940 �0.4960
MAE (mH) — 35 32 35 38 37 37 39 43
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the corresponding global interpolation. Indeed, the least accu-
rate local interpolation (the LB model using wPC-GGA

N (r)) has a
lower MAE than the most accurate global interpolation (the SPL

model using WNLR
1 ½r�).

In Fig. 3, the global AC (with exchange omitted) obtained by
SPL global and local interpolation with both the SCE and NLR
input quantities are presented for the Ne6+ ion. It can be seen
that the curves pertaining to the local interpolation schemes
are considerably closer to the reference AC (Lieb/CCSD) than
those pertaining to global interpolation. This would indicate
that the advantage conferred by a local interpolation approach
over a global interpolation approach is significantly greater
than any depreciation in accuracy resulting from approximating
SCE quantities with those of the NLR model. Furthermore, it can
be seen from Table 2 that the accuracy of these atomic correlation
energies depends more on the interpolation model chosen than
the accuracy of the l - N quantities.

In addition, it can also be seen that the MAE for the SPL
interpolation is smaller than that for the LB interpolation scheme
for both the global and local schemes. Interestingly, interpolating
using the NLR approximation rather than the exact SCE form of

W1½r� and wN(r) results in a lower MAE. It has previously been
observed that interpolation using SCE quantities often leads
to an underestimation of atomic correlation energies6 and that
higher values of W1½r� results in a higher globally interpolated

correlation energy. In these systems,WNLR
1 ½r� � W1½r� and thus

has the effect of partially offsetting the interpolation error. Whilst
correlation energies obtained by global interpolation with SCE
are a lower bound to those obtained with the NLR model in its
place, this is not necessarily the case for the local correlation
schemes. As shown in Table 2, for Be and Ne6+ the correlation
energies obtained by the interpolation with wNLR

N (r) are lower
than those obtained with the exact wN(r). This is reflected in the
AC curves for Ne6+, shown in Fig. 3, in which that obtained by
local interpolation with NLR lies below that resulting from local

interpolation with SCE, despite the fact thatWNLR
1 ½r� � �11:0Eh

compared to W1½r� � �11:5Eh. To rationalize these observa-
tions, it is useful to consider the corresponding energy densities;
Fig. 4 shows the CCA correlation energy density in Ne6+, multi-
plied by density and spherical volume element, obtained with
both SPL and LB interpolation each using wN(r) and wNLR

N (r)
as input quantities, with the reference energy density for compar-
ison. From this figure we can first notice that interpolation
accuracy has a greater degree of dependence on interpolation
model itself than on the accuracy of the wN(r) input parameter,
as the energy densities exhibit a greater difference between SPL &
LB than between SCE & NLR. We can also see that the two energy

Table 2 The atomic (ionic) correlation energies in Hartree atomic units obtained by the local SPL and LB interpolation with the exact (SCE) and
approximate (NLR, PC-LDA and PC-GGA) wN interpolation quantities

Species Eref
c SPL SCE SPL NLR SPL PC-GGA SPL PC-LDA LB SCE LB NLR LB PC-GGA LB PC-LDA

H� �0.0409 �0.0367 �0.0344 �0.0364 �0.0416 �0.0398 �0.0375 �0.0393 �0.0444
He �0.0400 �0.0378 �0.0370 �0.0347 �0.0393 �0.0394 �0.0388 �0.0359 �0.0405
Be �0.0920 �0.0876 �0.0904 �0.0763 �0.0925 �0.1049 �0.0955 �0.0804 �0.0973
Ne6+ �0.1833 �0.1919 �0.1997 �0.1653 �0.2036 �0.2045 �0.2124 �0.1760 �0.2156
Ne �0.3470 �0.3830 �0.3720 �0.3770 �0.3870 �0.3960 �0.3860 �0.3900 �0.3980
Ar �0.4040 �0.4450 �0.4360 �0.4350 �0.4510 �0.4590 �0.4510 �0.4940 �0.4640
MAE (mH) — 16 14 17 18 23 21 26 25

Fig. 3 The global correlation AC curves for the Ne6+ ion obtained by the
CCSD (reference) and by the global and local SPL interpolation with the
SCE quantities and NLR approximation to the SCE quantities.

Fig. 4 The coupling constant averaged correlation energy densities
multiplied by the density and spherical volume element for the Ne6+ ion,
obtained by both LB and SPL interpolation models and employing both the
SCE (‘‘SPL’’ and ‘‘LB’’) and NLR l - N energy densities (‘‘SPL NLR’’ and
‘‘LB NLR’’). The reference curve has been computed at the CCSD level.
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density curves that have been obtained by the interpolation with
NLR quantities appear to be slightly below those obtained with
the SCE quantities. As described in relation to Fig. 2, in the core
region of Ne6+ (r t 0.32) wNLR

N (r) Z wN(r), whereas the opposite is
generally true in the valence region. In the SPL and LB models,
the sensitivity of the interpolated energy density to wN(r) is
dependent on the magnitude of the local slope w0

0(r); in regions
where w0

0(r) - 0, wl(r) simply approaches the exchange energy
density as the correlation energy density itself vanishes, hence
the accuracy of wN(r) has a minimal effect on the interpolated
wl(r). However, the converse is true in regions where w0

0(r) -�N,
as the interpolated energy densities for both models would approach
wN(r), making them highly sensitive to its accuracy. We can see in
Fig. 4 how that reflects on the interpolated energy densities. In the
core region, the NLR based interpolated energy densities (the ones
labeled ‘‘SPL NLR’’ and ‘‘LB NLR’’) are hardly distinguishable from
the ones that are based on the SCE (labeled ‘‘SPL’’ and ‘‘LB’’).
Therefore, in the core region the interpolation neutralizes the
difference between wNLR

N (r) and wN(r). In the valence region, where
the local interpolation is much more sensitive to the changes in
wN(r), we can see that the NLR based interpolated energy densities
are below the SCE based ones. This is why in the case of the Ne6+ ion
the NLR based local interpolation gives lower correlation energy than
the SCE based local interpolation, exemplifying an interesting
difference between the global and local interpolations.

B. The H2 dissociation curves

Fig. 5 displays the H2 dissociation curves obtained by local
interpolation with the two-leg and LB models, using both SCE
and NLR input parameters, in comparison to those acquired
with FCI and the PBE functional (as described in Section III).

It can be seen in Fig. 5 that the dissociation curves given by
the two interpolation models differ only slightly when the NLR
model is used in place of the SCE model. Additionally, both
models correctly predict the H2 dissociation limit when using
the NLR approximation, reflecting the underlying ability of the
NLR model itself to dissociate the H2 molecule correctly.6,21

More pertinent however is the region of the dissociation
curve at intermediate bond lengths, where DFT combined

(or corrected with) methods that are constrained to be exact
in the dissociation limit generally exhibits an unphysical ‘‘bump’’
(see, e.g., ref. 6 and 61). It was previously shown that the local
interpolation approach, even with exact input parameters, does
not entirely eliminate this erroneous feature, although it is
significantly attenuated with the local two-legged interpolation
model.6 In Fig. 5 we see that this feature is somewhat worsened
when the NLR model is used in place of the SCE model for wN(r)
as input for the local interpolation. In this region, the local initial
slope is already large in magnitude (and increasing with bond
length) thus there is a strong sensitivity of the interpolation
models to the accuracy of wN(r). The approximate nature of the
NLR model therefore has its most significant impact in this part
of the dissociation curve. In contrast, approximating the SCE
energy density with the NLR energy density in the interpolation
models has considerably less effect on the energy computed at the
equilibrium bond length, reflecting the lower sensitivity to the
l - N quantities. We also remark that all of the local inter-
polation forms are more accurate than spin-restricted PBE at the
equilibrium bond length. The dissociation curves computed using
the SPL model are omitted from Fig. 5 for clarity, however it is
noted that their properties are broadly similar to those of the
LB curves but with a more pronounced unphysical feature at
intermediate bond lengths.6

Fig. 6 shows the H2 dissociation curves obtained by interpola-
tion using the PC model to approximate wN(r). As described in
Section II C, in the present work the PC model is examined at both
the LDA level and at the GGA level, containing gradient-dependent
terms. It appears from Fig. 6 that the most accurate dissociation
curve obtained using PC model energy densities is the global
two-legged model using PC-GGA to approximate wN(r). As
observed in Fig. 6, the two-legged model gives a more accurate
dissociation curve than the LB interpolation model, however
in this case the differences between interpolation models
themselves are overshadowed by those arising from the use of
different l - N quantities. There is also a marked difference
between the dissociation curves obtained by global and local LB
interpolation, using PC-GGA input quantities; whilst global
interpolation yields a qualitatively accurate dissociation curve
with only a small underestimation of the dissociation limit,

Fig. 5 The H2 dissociation curves obtained by the local LB and two-
legged representation interpolation with the SCE (‘‘LB’’ & ‘‘2-leg’’) and NLR
(‘‘LB NLR’’ & ‘‘2-leg NLR’’) wN(r) interpolation input parameters. The PBE
and FCI curves are shown for comparison.

Fig. 6 H2 dissociation curves obtained by local (‘‘loc’’) and global (‘‘glo’’)
LB and two-legged interpolation models using PC-LDA and PC-GGA input
parameters. The PBE and FCI curves are shown for comparison.
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local interpolation employing wPC-GGA
N (r) yields a curve that

becomes highly unphysical beyond the equilibrium geometry
and results in an energy much lower than that of two hydrogen
atoms in the dissociation limit. This is directly attributable to

the superior performance ofWPC-GGA
1 ½r� over wPC-GGA

N (r) where,
as seen in Fig. 2, the PC-GGA energy density has erroneous
long-range behaviour however global error cancellation results

in a factitiously accurateWPC-GGA
1 ½r�. In the local interpolation

scheme, wl(r) - w0(r) where wPC
N(r) crosses w0(r) and as such

there is no equivalent error cancellation for local interpolation.
The dissociation curves based on PC-LDA model input

parameters are considerably poorer than those yielded by the
PC-GGA model, both with a global and local scheme. For global
interpolation, a quantitative comparison of their accuracies at
the H2 dissociation limit can be made by considering that the

XC energy should cancel the Hartree energy and thatW0
0 ½r� ! �1

in this limit, hence EXC½r� �U½r� ¼ W1½r� �U½r� ¼ 0 should be

satisfied. For the infinitely stretched H2,WPC
1 ½r� will be twiceWPC

1 ½r�
evaluated on the density of a hydrogen atom. Whilst this error is

relatively small for PC-GGA, WPC-GGA
1 ½r� �U½r� ¼ �0:3mEh, it is

very large for PC-LDA,WPC-LDA
1 ½r� �U½r� ¼ 312mEh.

Whilst local interpolation using wNLR
N (r) in place of the exact

SCE quantities give reasonably accurate dissociation curves for
H2, those obtained with the computationally cheaper wPC

N(r)
appear volatile and unphysical and as such presently seem an
inappropriate choice to substitute SCE energy densities in local
interpolation models. The use of the PC model in global inter-
polation schemes appears to show more promise, yielding quali-

tatively accurate H2 dissociation curves when usingWPC-GGA
1 ½r�.12

The accuracy of global interpolations that include the PC model
and the issues coming from the lack of size consistency have been
recently investigated in ref. 62.

C. The lithium hydride dissociation curve

Size consistency within the global interpolation models that we
use in this work is still preserved for systems that dissociate
into equal fragments (assuming that the interpolation input
quantities are size consistent themselves, which is a delicate
issue for exchange and GL2 in a spin-restricted framework, see
the discussion in ref. 62). For this reason, it would be interesting
to compare the performance of the local interpolations against
the global ones in the case of heterolytic dissociation. In Fig. 7
we show the dissociation curves obtained by the local and global
SPL interpolation and the reference (FCI) curve for comparison.
For both the global and local interpolation we used the approxi-

mate NLR input quantities: WNLR
1 ½r� and wNLR

N (r), respectively.
We can see that the energies of the stretched LiH obtained

by the global SPL interpolation are unacceptably low. In the
dissociation limit of LiH there is a step in the KS potential
closer to the hydrogen, the more electronegative atom of the
two.63–65 This step ensures that in the dissociation limit the
atomic HOMO orbital energies are re-aligned and the molecule
correctly dissociates into neutral atoms.63–65 This is also why
the KS HOMO–LUMO gap closes in the dissociation limit of

LiH, as it happens in the hydrogen molecule. As the gap closes

and W0
0 ½r� diverges, the SPL globally interpolated Wl½r�

reduces to WNLR
1 ½r�. The energy of the latter are extremely

low as it can be seen from the inner panel of Fig. 7, where we
show the NLR dissociation curve that corresponds to the

following approximation: Wl½r� � WNLR
1 ½r�.

In contrast to the globally interpolated, we can see that the
locally interpolated energies are much more in-line with the
reference data up to R B 7 a.u. However, even in this case, as
the gap closes, the local slope will eventually tend to minus
infinity everywhere,6 making the locally-interpolated energies
approach the NLR energies of the two fragments. The NLR
energy is correct for the H atom (as NLR is exact for any one-
electron density), but it overcorrelates the Li atom. We thus see
that the local slope (even the exact one) is yet not suited to
signal locally the amount of static correlation, as it is too
dependent on a global quantity, namely the HOMO–LUMO
gap. A possible way forward is to use other ideas to signal
strong correlation such as those recently proposed in ref. 47,
66, and 67 or to define a ‘‘local gap’’ as in ref. 68.

V. Correlation indicator and lower
bound to the total energy from
an interpolation model

In this section we use the two-legged representation inter-
polation model between weak and strong correlation to define
and compute a correlation type indicator (which, although it
has very interesting properties, does not address the issue
discussed at end of the previous Section IV C), and a lower
bound to the exact energy, which is tighter than previously
established ones.23

Fig. 7 The LiH dissociation curves obtained by FCI, NLR and the global
and local SPL interpolation with the NLR quantities.
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A. Simple correlation type indicator

In DFT and quantum chemistry, electron correlation is usually
classified into the intuitive concepts of dynamic and static
(non-dynamic) correlation. Dynamic correlation is considered
to be a short-range effect captured by perturbation theories
such as MP2, which uses Hartree–Fock as a reference, or the
Görling–Levy (GL2) perturbation theory,40 which uses the KS
system as a reference. Static correlation, instead, is associated
to near-degeneracy effects, with few or even a large number of
important determinants in the physical description of the
system at hand. These are cases in which a single determinantal
reference is a bad starting point for perturbation theory. From the
adiabatic connection point of view, a system dominated by dyna-
mical correlation has a l dependence ofWl½r� that is very close to a
straight line for l between 0 and 1, while a system with substantial
static correlation has aWl½r� that is substantially curved.

Burke, Ernzerhof and Perdew41 have already noticed that the
point of intersection between the two line segments used in their
two-legged representation model has either a minimal (only static
correlation) or a maximal (only dynamical correlation) value. We
show here that the point of intersection of the two line segments in
a different but similar two-legged representation,6 is a very simple
parameter that indicates the correlation type. This quantity is
xcorr(r) of eqn (10b). Notice that there are both local and global
variants of this quantity. The local one is given in eqn (10b),
whereas the global Xcorr parameter is given by:

Xcorr ¼
W1 �W0

W0
0 (24)

Assuming the convexity ofWl and wl(r), Xcorr and xcorr(r) can have
values between 0 and 1. If Xcorr = 1, then the shape of the adiabatic
connection integrand is linear for l values between 0 and 1 and
GL2 captures all the correlation in the system. We can say that, if
Xcorr = 1, then the correlation in the system is purely dynamical. On
the other hand, if Xcorr = 0, then the adiabatic connection curve is
L-shaped and all the correlation present in the system is static.

In Fig. 8 we show the ‘‘exact’’ Xcorr (the black curve) for the
hydrogen molecule as a function of the bond length. At short
bond lengths, the Xcorr value is quite high, reflecting the
dominance of dynamic correlation. Moreover, at short bond
lengths it is expectedly very close to the Xcorr value for the He
atom (Xcorr = 0.84). As we stretch the H2 bond, Xcorr value
decreases and finally drops to zero for the infinitely stretched
H2 in which all the present correlation is static.

By virtue of eqn (24), we need the three input quantities to

compute Xcorr: W0½r�, W0
0 ½r� and W1½r�. If we lack W1½r�

information, we can approximate this quantity by doing the

interpolation that uses W0½r�, W0
0 ½r� and W1½r� as input. For

this purpose, we can employ the interpolation models that we
use in this work, such as the SPL or LB model. In Fig. 8,
together with the ‘‘exact’’ Xcorr for H2 we show the approximate
ones that have been calculated with interpolated W1½r� from

W0½r�, W0
0 ½r� and W1½r�. We used the two interpolation

methods, SPL and LB and both the exact (SCE) and the NLR
W1½r� quantities. We can see in Fig. 8 that all the approximate

curves follow the trend of the ‘‘exact’’ Xcorr curve. In this case,
the LB interpolation is more accurate than the SPL interpolation.
What we also see is thatW1½r� interpolation is more sensitive to
the interpolation form than the accuracy of theW1 quantity: the

LB Xcorr curve based onWNLR
1 ½r� is even more accurate than the

SPL Xcorr curve that is based on the exact W1½r�.
Apart from indicating a type of correlation, the Xcorr parameter

can be very useful for telling us how accurate GL2 (or MP2) is for
the given system. The closer the Xcorr value is to 0, the more poorly
the two theories will describe correlation in the system. A better
starting point for the correlation description in this case would
be the KS SCE theory, which gives extremely low energies for the
systems whose Xcorr value is close to 1.

Grimme and Hansen69 have recently introduced a position-
dependent indicator based on the fractional orbital occupation,
aiming to detect molecular ‘‘hot regions’’ that have a high static
correlation contribution. Notice that if we go from the Xcorr

value, which is a single number, to the xcorr(r) we get the
correlation type indicator as a function of space. It is easier
to visualize xcorr(r) than wl(r), as the latter depends on both
l and r. In the top panel of Fig. 9 we show xcorr(r) for the He
atom and the Ne8+ ion, both belonging to the helium iso-
electronic series. We can see that for the He atom the xcorr(r)
decreases as we move away from the nucleus, but in the
energetically most important regions (r t 2.0 a.u.), xcorr(r) is
quite high and also gives the high global Xcorr = 0.84 value. The
xcorr(r) curve for the Ne8+ ion is higher and flatter than that of
He and the corresponding global Xcorr = 0.97 value is much
closer to 1. This indicates that dynamic correlation dominates
even more in this ion than in the helium atom and this is what
one would expect in the case of the helium isoelectronic series
as the nuclear charge increases.6 It is important to stress that in
the asymptotic, low-density regions, the local indicator becomes
too sensitive to numerical errors, since both numerator and
denominator or eqn (10b) become very small, so that it should
not be trusted in these energetically unimportant regions.

In the bottom panel of Fig. 9 we show xcorr(r) for the Be atom
and the Ne6+ ion, members of the beryllium isoelectronic
series. We can see that these two xcorr(r) curves exhibit almost

Fig. 8 Xcorr correlation-type parameter of eqn (24), as a function of the H2

bond length.
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a step structure, clearly distinguishing between the core region
(Zr t 4.0 a.u. for Be and Zr t 3.2 a.u. for Ne6+) and the valence
region. In the core region the xcorr(r) value is high and close to
1.0 for Ne6+ ion and around 0.9 for Be. This indicates the
presence of almost purely dynamic correlation. The trend that
the ion with a greater Z value has higher values of xcorr(r) also
holds in this region. On the other hand, in the valence region
xcorr(r) of the two curves is lower with the value about 0.5,
indicating a substantial contribution of static correlation and
that is reflected by the strong curvature of the corresponding
local AC curves.42 Interestingly, the trend of two xcorr(r) curves is
opposite in the valence region in which xcorr(r) of Ne6+ lies
below that of Be. This observation signals that in the valence
region of the former ion there is a higher contribution of static
correlation. This can be understood in the light of the trend for
KS HOMO–LUMO gap for the beryllium isoelectronic series,
as the nuclear charge Z increases.6,28 The KS HOMO–LUMO
(2s–2p) gap of Be is actually smaller (0.133Eh) than that of Ne6+

(0.481Eh). However, the absolute values of the Ne6+ orbital
energies are much higher. Therefore, for a fairer comparison
we can use a relative KS orbital energy gap, which we define in

the following way:
e2s � e2p

e2s
. The value of the relative gap defined

this way for Ne6+ is much lower than that of Be: 0.070 and 0.364,
respectively. The reported KS energy gaps have been calculated
performing the maximisation of eqn (21) at l = 0 and using
CCSD/aug-cc-pCVTZ level of theory for obtaining E0[v] (see
Section III for the details). They also correspond to the KS
potential, which goes to zero as the distance from the nuclear
charge goes to infinity.

In Fig. 10 we show the xcorr(z) curves for the H2 molecule along
the internuclear axis for several bond lengths as a function of the
distance from the bond midpoint, z. We can see that at the smaller
bond length (R = 2.0) the structure of the xcorr(z) curve is similar to
the one of the helium atom. We also see that as we stretch the
bond, the curves have a more linear structure. For the stretched H2

we can see that hot static correlation regions are present at almost
all points in space. Very small xcorr values indicate that in all these
points we have the similar ‘‘L-shaped’’ local AC curves.6,32 The
exception is the energetically unimportant bond midpoint of
stretched H2, at which in case of infinitely stretched H2 the local
AC becomes: w0rlr1(z) = w0(z), with xcorr(z) = 1 and this happens
because of the antisymmetry of the correlation hole at bond
midpoint of H2 at R - N.70

In the case of LiH we observed an interesting difference
between shapes of the local AC curves at the hydrogen and lithium
nucleus. In the upper panel of Fig. 11 we show the correlation part
of the local AC curves at both the hydrogen and lithium nuclei in
near-equilibrium region, R = 3.0 a.u. We can see that the curvature
of the local AC curve at the hydrogen nucleus is much more
pronounced than that of the lithium nucleus. As a result of the
electronegativity difference between the lithium and hydrogen
atom, we expect that LiH at equilibrium has a significant ionic
character. As a result of the bond polarization of LiH, we would
expect that the hydrogen atom would have slightly anionic character
and that the lithium atom would have slightly cationic character.
That fact is mirrored by the observation of the corresponding local

Fig. 10 xcorr(z) local correlation-type indicator of eqn (10b). Shown for
the H2 molecule along the internuclear axis at different bond lengths,
where z is the distance from the bond midpoint.

Fig. 9 xcorr(r) local correlation-type indicator of eqn (10b). Shown for the
He atom and Ne8+ ion atom (upper panel) and for the Be atom and Ne6+ ion
(lower panel), where r is a distance from the nucleus. Insets are comparing
corresponding densities rescaled in the way as shown on the y-axis.
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AC integrands and associated xcorr(r) values. From Fig. 11 we can see
that the local AC at the Li nucleus of LiH at R = 3.0 a.u. is nearly a
straight line, as it is the case with the local AC at the nucleus of Li+

ion (shown in the lower panel of the same figure). The two
corresponding xcorr(r) are the same and very close to 1. On the
other hand, the highly pronounced curvature present in the local AC
at the H nucleus of LiH is very similar to that of the hydride ion. The
xcorr(r) value at the H nucleus of LiH is 0.7, indicating a significant
presence of static correlation in this region, but still somewhat
lower than at the nucleus of the hydride ion with xcorr(r) = 0.6.

Both Xcorr and xcorr(r) quantities can be used in the context of the
interpolation along the adiabatic connection. It might be the case
that the certain interpolation forms are better suited for a particular
correlation regime than for the others. For instance, we noticed
that the SPL model works better than the others for atoms (with the
usually high Xcorr value), while the LB and two-legged interpolation
performed better than the SPL for the intermediate correlation
regimes (such as the H2 at about R = 5.0 a.u.). We also see in
this work that the interpolation can be even more sensitive to the

interpolation form than the different input for the l - N

quantities. To tune the interpolation accuracy, a new XC functional
can be constructed in which the correlation energies obtained by
different interpolations (or the correlation energy densities in the
local interpolation variant) are mixed linearly. The linear mixing
parameters can depend on Xcorr and thus be system-dependent:
e.g. for large Xcorr the total correlation would have a higher portion
of the SPL interpolated correlation and a larger portion of the
correlation obtained by the LB and the two-legged representation
interpolation for smaller Xcorr. We will try to pursue this idea in
future work.

B. Lower bound to the exact energy

In wave function theory (WFT), the energies obtained by varia-
tional methods are always upper bounds to the exact ground
state energy. The larger the space for the trial wave function, the
closer the energy to the true one is. This appealing feature is lost
in KS DFT based on DFA, as the energies can be both higher
and lower than the exact ones. It was shown in ref. 23 that if we
approximate the AC integrand with the single line segment
Wl½r� ¼ W1½r�, we always obtain a lower bound to the exact
energy. In this approximation, called KS SCE, the exchange–correla-
tion functional is simply given by EXC½r� ¼ W1½r�. The fact that
the global AC curve is monotonically decreasing ensures that the
KS SCE energies (both the self-consistent ones and the ones
evaluated on the exact densities) are always lower than the exact
ones. For systems in which static correlation dominates strongly,
the KS SCE method gives reasonable energies,13,43,71 tending
towards the exact ones in the low-density limit. On the other hand,
for systems where correlation is weak or moderate the KS SCE
energies are too low.13,18,43 In these scenarios, the bound is very
(sometimes extremely) loose. The KS SCE energies can be improved
if we add corrections to them13 or if we use them as input in an
interpolation scheme,6 a procedure we have also followed in the
previous sections of this work. In this case, we can obtain energies
that are substantially improved, but, as in other DFA’s, they can be
both higher and lower than the exact ones.

In this section we propose a way to tighten the lower bound
given by the KS SCE energy for a given density. We do this by
redefining the two-legged representation interpolation, using

W0½r�, W0
0 ½r� and W1½r� as input,

Wl ¼
W0 þ lW0

0
l � XSCE

corr

W1 l4XSCE
corr

8<
: (25)

where,

XSCE
corr ¼

W1 �W0

W0
0 : (26)

We call this interpolation 2-leg SCE interpolation. ForWl of
eqn (25) to be a rigorous lower bound to the exact Wl, two
conditions have to be satisfied. The first one is the monotonically
decreasing nature of Wl, which is known to be true.33,72 This
condition ensures that ‘‘the second leg’’ of eqn (25) is below the
exact integrand curve: W1 � Wl. The second condition is the
convexity of the Wl integrand. If Wl as function of l is convex,

Fig. 11 The local correlation AC curves at the two nuclei of LiH at
R = 3.0 a.u. (upper panel) and at the nuclei of H� and Li+ ions (lower panel).
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then W0 þW0
0
l � Wl. The convexity of Wl is often assumed to

be true, but it can actually be violated in the case of phase
transitions along the adiabatic connection path. In these cases,
the adiabatic connection curve could have jumps and would then
be only piecewise convex. For example, if our physical, l = 1, system
is the uniform electron gas (UEG) at a density lower than the one at
which the ferromagnetic transition occurs, then the curve could
have a small jump. Phase transitions that occur when the external
potential is changed smoothly (see, e.g., ref. 73–77), are usually
accompanied by a change in the density. Here we consider the
density-fixed adiabatic connection, and we expect that the density
constraint will drastically reduce the occurrence of these jumps.
Also note that if Wl is only piecewise convex, then Xcorr indicator
defined in the previous section may be greater than 1. In most
cases, as just mentioned, the density constraint on a chemical
system should prevent this from happening, although exceptions
(like the one of low-density UEG) might still occur. Besides being
monotonically decreasing, it is also known that Wl is bounded
from below by the Lieb–Oxford inequality:22

Wl½r� � �CLO

ð
r4=3dr; (27)

where CLO is a constant rigorously known to be between 1.411978

and 1.6358.79 In addition to the 2-leg SCE lower bound, another
lower bound can be constructed by replacingW1½r� appearing in

eqn (25) with �CLO

Ð
r4=3dr:

Wl ¼
W0 þ lW0

0
l � XLO

corr

�CLO

ð
r4=3dr l4XLO

corr

8><
>: (28)

where,

XLO
corr ¼

�CLO

Ð
r4=3dr�W0

W0
0 : (29)

We call this interpolation from the 2-leg LO interpolation.

SinceW1½r� � �CLO

Ð
r4=3dr correlation energies from the 2-leg

LO interpolation would be also lower bound to the exact correlation
energies assuming convexity of the global AC integrand. In this
work we use the following value for the LO constant: CLO = 1.4174.
The given LO constant was obtained by computing explicitly the
indirect energies of the uniform electron spheres by using the SCE
methodology, and extrapolating the value of CLO in the N - N

limit.78 The value is very close to the lowest ever rigorously observed
value for the given constant: 1.4119.78 This value is also lower than
the value that was previously believed to be a lower bound for CLO,
namely 1.444, which was obtained from the total energy of the bcc
crystal of the uniform electron gas. Lewin and Lieb have recently
shown that this value does not correspond to an indirect energy.80

In Table 3 we show the reference correlation energies (CCSD),
the KS SCE ones (i.e., W1½r� �W0½r�), the correlation energies

obtained from the LO bound (i.e.,�CLO

Ð
r4=3dr�W0½r�), together

with the correlation energies obtained by the 2-leg SCE and 2-leg
LO interpolations. First of all, we immediately see that already the
KS SCE correlation energies are significantly above the ‘‘LO correla-
tion energies’’. We also see from this table that the 2-leg SCE

substantially tightens the lower bound of KS SCE, even by an order
of magnitude in some cases. Notice that the accuracy of the 2-leg
SCE is not as high as the accuracy of the other interpolations
presented in this work, but the main advantage of it is that it
recovers the KS SCE feature to give correlation energies that are a
lower bound to the exact ones. When XSCE

corr Z 1, the correlation
energy obtained from the interpolatedWl½r� of eqn (25) becomes

W0
0 ½r�
	
2 ¼ EGL2

c ½r�. This happens for the atoms given in Table 3
and this is why both 2-leg SCE and 2-leg LO give the same
correlation energies for the given atoms. However, the role of
W1½r� in the 2-leg SCE interpolation is to correct EGL2

c [r] energy
when it becomes too low. This happens for example in the
stretched H2, e.g. at R = 10.0 a.u. (where XSCE

corr { 1) the GL2
correlation energy is too low, EGL2

c [r] B �80Eh, but the 2-leg SCE
interpolation gives a value very close to the exact one. We can see
how the 2-leg SCE and the other interpolations employed here can
benefit from the complementary information provided by the

W1½r� andW0
0 ½r� quantities. For the stretched H2 we can see that

the 2-leg SCE correlation energies are much closer to the exact ones
than the ones of the 2-leg LO interpolation. The latter could be
tightened if instead of using 1.41, we use C = 1.21, which should be
the optimal constant for N = 2,78 but that would lead to the loss of
generality w.r.t. number of electrons.

It would be interesting to see whether the energy densities
obtained by the local variant of eqn (25) give a lower bound to
wl(r) and thus also a lower bound to %wXC(r). For this to be true, two
conditions should again be satisfied: the monotonic decrease and
convexity of wl(r) with respect to l. Our numerical results for
Coulombic systems suggest that both conditions are satisfied.6,42

The known counterexample to the monotonicity of wl(r) is a system
in which the external potential is not Coulombic, i.e., in the
Hooke’s atom series, where in the energetically unimportant region
(in the density tail), wN(r) can be above w1(r).12 In Fig. 12 we show
the coupling constant averaged correlation energy %wc(r) obtained by
the local variant of the 2-leg SCE interpolation, together with the
reference %wc(r) and the wc(r) corresponding to the l - N (SCE)
limit, wN(r)� w0(r), for the He atom (upper panel) and the Be atom
(lower panel). In both cases, the SCE correlation energy densities
are a lower bound to the reference %wc(r), but we can see that this
bound is very loose, especially in the region near the nuclei. With
the 2-leg SCE local interpolation method we can see that the local

Table 3 The correlation energy obtained from the KS-SCE model,
LO bound, 2-leg SCE model and 2-leg LO model compared with the
reference value

Species Eref
c KS SCE LO 2-leg SCE 2-leg LO

H� �0.0409 �0.1860 �0.2662 �0.0571 �0.0571
He �0.0400 �0.4733 �0.6689 �0.0450 �0.0450
Be �0.0920 �1.3464 �1.7775 �0.1234 �0.1234
Ne6+ �0.1833 �3.9666 �5.1464 �0.2779 �0.2779
Ne �0.3470 �7.9160 �9.0470 �0.4370 �0.4370
Ar �0.4040 �20.9440 �23.2720 �0.5110 �0.5110
H2 R = 1.4 �0.0400 �0.3020 �0.4310 �0.0490 �0.0490
H2 R = 2.8 �0.0680 �0.2250 �0.3580 �0.1020 �0.1020
H2 R = 5.0 �0.1840 �0.2340 �0.4010 �0.2210 �0.3610
H2 R = 7.0 �0.2340 �0.2500 �0.4320 �0.2480 �0.4250
H2 R = 9.0 �0.2560 �0.2620 �0.4480 �0.2620 �0.4460
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bound has been substantially tightened. We do not attempt here to
construct a local variant of the 2-leg LO bound, as the rigorous local
variant of the LO inequality that binds the energy density in the
gauge of the XC hole is not known.12

VI. Conclusions and perspectives

Interpolating locally along the adiabatic connection between the
weak and strong coupling limits has manifold advantages: unlike
previous efforts in this direction based on global (integrated over
all space) adiabatic connection models, it does not violate size-
consistency, at least in the absence of degeneracy. While most of
the present density functional approximations have a bias towards
weak correlation, the inclusion of information from the strictly corre-
lated electrons limit leads to a more balanced approach, avoiding

bias towards a particular correlation regime. This approach does not
suffer from the exchange energy density gauge problem as a result of
the compatibility of the energy densities at strong correlation with
the exact exchange energy density. The main focus of this work was
to test how the replacement of the computationally expensive SCE
energy densities with approximate strong-coupling energy densities
affects the local interpolation scheme. For this purpose, we
employed different models for the SCE energy densities in the gauge
of the XC hole: the nonlocal radius functional (NLR) (a functional
which retains some of the SCE nonlocality) and the (semi)local
‘‘point-charge plus continuum’’ (PC) model functional. We used
atomic correlation energies, together with the hydrogen molecule
and the lithium hydride dissociation curves, as simple tests. For
these systems all the other ingredients (exchange energy densities
and local slopes) are available to high accuracy, which allows us to
isolate the effect of the error coming from the approximations for
the strong-coupling limit.

These tests showed that the NLR energy densities are an
excellent alternative to the SCE energy densities for the local inter-
polation. The energy densities with the PC model are very easy to
obtain, but the overall performance of the local interpolation based
on the PC model was not satisfactory. These interpolations are
adequate for the atomic correlation energies but they introduce a
very large error for the considered molecular dissociation curves.
As the error in the PC model based local interpolation is already too
large, the global interpolation based on the PC-GGA model seems to
be more promising despite the size consistency issues with the
global interpolations. Extensive testing of the PC model in the
context of the global interpolation has been very recently carried
on in ref. 62, where some of the limitations of global interpolations
have been carefully studied.

We have also used interpolation models along the adiabatic
connection to propose a correlation-type indicator and a tighter
lower bound to the exact XC energy. In our future work we will try to
use these two quantities to improve the accuracy of the local
interpolations. We will also test the recently proposed model of
Bahmann, Zhou, and Ernzerhof,48 which should provide, in principle,
even better results than the original NLR approximation.

Appendix A: the mathematical forms
of the interpolation models for the
adiabatic connection

The functional forms of the interpolation models used in this
work are given in Table 4.

Fig. 12 The coupling constant averaged correlation energy density ( %wc(r))
obtained by the 2-leg SCE interpolation (the local variant of eqn (25))
shown together with the reference %wc(r) and the SCE correlation energy
density. Upper panel: He atom (reference %wc(r) obtained by FCI), lower
panel: Be atom (reference %wc(r) obtained by CCSD).

Table 4 Forms of the adiabatic connection interpolation models (for the Padé[1/1] model, p 4 0, p A R)

wl(r) a(r) b(r) c(r) Ref.

SPL
aþ bffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ cl
p wN(r) w0(r) � wN(r)

� 2w0
0 ðrÞ

w0ðrÞ � w1ðrÞ
6, 7, 15

LB
aþ b

1

ð1þ clÞ2 þ
1ffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ cl
p

� �
wN(r) (w0(r) � wN(r))/2

� 4w0
0 ðrÞ

5 w0ðrÞ � w1ðrÞð Þ
6, 38

Padé[1/1]
aþ bl

1þ cl
w0(r) w0

0(r) �w0ðrÞ þ wpðrÞ � w0
0 ðrÞ

w0ðrÞ � wpðrÞ
6, 36, 39
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