## Density-corrected DFT explained: Questions and answers

SUHWAN SONG<sup>*a*</sup>, STEFAN VUCKOVIC<sup>*b*</sup>, EUNJI SIM<sup>*a*</sup>, AND KIERON BURKE<sup>*b*</sup> <sup>*a*</sup>Department of Chemistry, Yonsei University, 50 Yonsei-ro Seodaemun-gu, Seoul 03722, Korea <sup>*b*</sup>Departments of Chemistry and of Physics, University of California, Irvine, CA 92697, USA

October 14, 2021

## I. SUPPORTING INFORMATION

| CCSD                 | 17.3 |
|----------------------|------|
| HF-PBE               | 15.6 |
| PBE (un-conv.)       | 16.6 |
| PBE (conv.)          | 23.9 |
| $S^{PBE}$ (un-conv.) | 1.1  |
| $S^{PBE}$ (conv.)    | 8.4  |

**Table S1:** Electron affinity information of hydrogen atom. CCSD/aug-cc-pV6Z is used as a reference. For standard PBE functional, 0.37 electrons are unbound and denoted as unconverged. For converged cases, where electrons are omitted to match HOMO equals 0, denoted as converged.

<sup>\*</sup>esim@yonsei.ac.kr

|       |                    | $\tilde{S}_{avq.}$ | SC       | HF       | DC(HF)   | SC-D4    | HF-D4    | DC(HF)-D4 |
|-------|--------------------|--------------------|----------|----------|----------|----------|----------|-----------|
| BH76  | 12 spinc           | 8.0                | 8.8(5.0) | 3.9(3.7) | 4.4(5.0) | 9.3(5.1) | 4.0(3.7) | 4.7(5.1)  |
|       | w/o spinc          | 6.6                | 8.5(3.8) | 3.3(2.6) | 3.3(2.4) | 8.9(3.9) | 3.6(2.7) | 3.5 (2.6) |
| RC21  | 9 spinc            | 9.2                | 5.4(3.2) | 4.6(3.5) | 4.3(3.1) | 6.9(3.7) | 4.0(2.7) | 4.1 (2.9) |
|       | w/o spinc          | 11.3               | 6.8(2.8) | 4.8(3.2) | 4.8(3.2) | 8.5(2.9) | 3.8(2.4) | 3.8(2.4)  |
| RSE43 | 8 spinc            | 3.7                | 3.1(1.4) | 2.0(3.3) | 2.0(1.7) | 3.0(1.4) | 2.0(3.4) | 1.9(1.6)  |
|       | $w/o {\rm ~spinc}$ | 2.0                | 2.9(1.2) | 1.0(0.8) | 1.5(1.1) | 2.8(1.2) | 0.9(0.7) | 1.5(1.0)  |

**Table S2:** *PBE mean absolute errors (MAE, kcal/mol) on three datasets (BH76, RC21, and RSE43) self-consistently, with the HF density, and DC(HF). Root-mean-squared-displacement of absolute errors (RMSD) values are noted in the parenthesis.*  $\tilde{S}_{avg}$ . *is the averaged density sensitivity (kcal/mol) for the given dataset. The deviation of HF's*  $\langle S^2 \rangle$  by more than 10% from the ideal  $\langle S^2 \rangle$  value is taken as a criterion for spin-contamination [1]. The D4 parameters uses the same parameter as PBE-D4 of Ref. [2].



**Figure S1:** MAE of RSE43 dataset with respect to the  $\tilde{S}$  value cut-off criterion for DC(HF)-PBE. DC(HF)-PBE is SC-PBE for spin-contaminated cases and below the  $\tilde{S}$  cut-off criterion value (the x-axis of the plots) and HF-PBE otherwise. The l.h.s. panel is the MAE of all cases in RSE43 and the r.h.s. panel is the MAE of non-spin-contaminated cases.



Figure S2: Same as Fig. 2, but for the DARC dataset.



Figure S3: Same as Fig. 2, but with spin-contaminated cases excluded.

|                 | Electron Affinity (kcal/mol) |          |               |          |       | $\epsilon_H \; (\rm kcal/mol)$ |                  |       |  |
|-----------------|------------------------------|----------|---------------|----------|-------|--------------------------------|------------------|-------|--|
|                 | PI                           | ЗE       | B3LYP         |          |       |                                |                  |       |  |
| name            | $\mathbf{SC}$                | DC       | $\mathbf{SC}$ | DC       | PBE   | B3LYP                          | $_{\mathrm{HF}}$ | exact |  |
| CCH             | 7.5                          | 5.5      | 1.5           | -0.2     | 44.0  | 28.4                           | -49.3            | -27.9 |  |
| $\mathrm{CH}_2$ | 3.6                          | 1.8      | 1.8           | 0.8      | 44.5  | 29.5                           | -33.5            | -13.4 |  |
| $CH_3$          | 1.6                          | -0.2     | -1.8          | -2.8     | 48.7  | 34.0                           | -22.1            | -1.2  |  |
| NH              | 4.7                          | 1.4      | 1.2           | -1.2     | 64.3  | 46.7                           | 1.0              | -8.3  |  |
| $NH_2$          | 2.6                          | 0.7      | -1.5          | -2.6     | 57.0  | 38.2                           | -31.3            | -16.8 |  |
| OH              | 3.6                          | 0.8      | -1.2          | -3.0     | 49.1  | 23.7                           | -68.6            | -41.7 |  |
| SiH             | 2.8                          | 2.2      | -1.9          | -2.9     | 28.7  | 18.9                           | -35.7            | -29.3 |  |
| $SiH_2$         | 4.0                          | 3.2      | -0.2          | -1.3     | 32.1  | 22.4                           | -30.4            | -25.1 |  |
| $SiH_3$         | -0.2                         | -0.1     | -1.9          | -1.6     | 20.4  | 6.3                            | -44.2            | -31.4 |  |
| PH              | 1.0                          | 0.6      | -0.1          | -0.3     | 38.0  | 24.4                           | -21.3            | -23.5 |  |
| $PH_2$          | -0.2                         | 0.0      | -2.0          | -1.8     | 35.1  | 21.4                           | -28.7            | -28.8 |  |
| HS              | -0.6                         | -0.7     | -2.5          | -2.4     | 22.0  | 4.3                            | -59.7            | -54.2 |  |
| $O_2$           | -0.2                         | -2.3     | 0.2           | -1.0     | 77.7  | 48.1                           | -57.0            | -9.5  |  |
| NO              | 6.2                          | 1.4      | 5.5           | 2.6      | 75.9  | 50.7                           | -60.2            | 0.2   |  |
| CN              | -2.8                         | 17.3     | 1.6           | 19.1     | 0.0   | -27.1                          | -120.9           | -89.5 |  |
| PO              | 3.8                          | 2.6      | 1.9           | 0.8      | 39.2  | 23.5                           | -48.7            | -24.9 |  |
| $S_2$           | -2.0                         | -1.5     | -1.5          | -1.1     | 28.5  | 10.4                           | -53.0            | -38.0 |  |
| $Cl_2$          | 5.4                          | 5.2      | 8.4           | 7.9      | -22.5 | -46.0                          | -106.8           | -54.7 |  |
| MAE             | 2.9(2.1)                     | 2.6(3.9) | 2.0(1.9)      | 3.0(4.2) |       |                                |                  |       |  |
| MAE*            | 2.9(2.2)                     | 1.8(1.6) | 2.1(2.0)      | 2.0(1.7) |       |                                |                  |       |  |

**Table S3:** Same as the Table 2 but with aug-cc-pvqz basis set. Electron affinity errors for the G21EA dataset relative to GMTKN55 reference. HOMO energies (kcal/mol) for anions ( $\epsilon_H$ ). The exact value is the -EA of the reference energy. MAE is the mean absolute error of all electrons affinities while MAE\* is the MAE without CN. RMSD values are given in the paraenthesis. CN is omitted due to large spin-contamination. See text for details.



**Figure S4:** G211P reaction energy errors for SCAN and r2SCAN with various grid levels. SCAN shows a grid convergency issue (calculated by ORCA pacakge). Note that all r2SCAN results are very similar (almost no changes).

## References

- Adam Rettig, Diptarka Hait, Luke W Bertels, and Martin Head-Gordon. Third-order møller–plesset theory made more useful? the role of density functional theory orbitals. *Journal of Chemical Theory and Computation*, 16(12):7473–7489, 2020.
- [2] Eike Caldeweyher, Sebastian Ehlert, Andreas Hansen, Hagen Neugebauer, Sebastian Spicher, Christoph Bannwarth, and Stefan Grimme. A generally applicable atomic-charge dependent london dispersion correction. *The Journal of Chemical Physics*, 150(15):154122, 2019.