Supporting Information for

"Quantification of Geometric Errors Made Simple: Application to Main-group Molecular Structures"

Stefan Vuckovic*,†,‡

†Institute for Microelectronics and Microsystems (CNR-IMM), Via Monteroni, Campus Unisalento, 73100 Lecce, Italy

[‡]Department of Chemistry & Pharmaceutical Sciences and Amsterdam Institute of Molecular and Life Sciences (AIMMS), Faculty of Science, Vrije Universiteit, De Boelelaan

1083, 1081HV Amsterdam, The Netherlands

E-mail: stefanvuckovic1@gmail.com

Contents

List of Tables	S2
List of Figures	$\mathbf{S2}$
S1 Further details on GEO and GEO'	$\mathbf{S4}$
S2 Computational details	S5

S3 Set of accurate semixperimental B2se structures used in the present work S6

S4 More basis set dependence results	S11
S5 Accuracy of hybrids for molecular geometries as a function of	the amount
of exact exchange	$\mathbf{S15}$
S6 Geometric performance of Grimme's '3-c' composite methods	s S18
S7 Breakdown of GEO' into contributions due to errors in specif	ic geometric
parameters for selected B2se molecules	$\mathbf{S19}$
References	$\mathbf{S41}$

List of Tables

List of Figures

S1	B2se set of molecules with their D values	S7
S2	GEO' (B2se reference vs. CCse reference)	$\mathbf{S8}$
S 3	GEO', CCSD(T) vs. B2se for small structures	S9
S4	GEO', CCSD(T) vs. B2se for water	S10
S5	GEO' boxplots for a range of approximations for B2se	S11
S6	GEO' boxplots for HF and BLYP for B2se \hdots	S12
S7	γ^\prime bars, same as Fig. 6, but within the VnZ basis set (no diffuse functions)	S13
S8	γ' bars for B2se \hdots	S14
S9	Same as the bottom panel of Fig. 7, but showing the γ^\prime results in place of GEO^\prime	S15
S10	optimal α or α -PBE for B2se molecules	S15
S11	Mean GEO' of α -PBE vs. α -BLYP	S16
S13	order of molecules in Fig. S10	S17
S14	GEO' boxplots for 3-c methods for B2se	S18

S16	$GEO_{ m s}'$ analysis for allene	S19
S18	$GEO_{\rm s}'$ analysis for acetylene	S20
S20	$GEO_{ m s}'$ analysis for buta-1,3-diyne \ldots \ldots \ldots \ldots \ldots \ldots	S21
S22	$GEO_{\rm s}'$ analysis for fluoroethene	S22
S24	$GEO_{\rm s}'$ analysis for chlorofluoromethane	S23
S26	$GEO_{\rm s}'$ analysis for prop-2-enal	S24
S28	$\mathit{GEO}'_{\mathrm{s}}$ analysis for (Z)-1-chloro-2-fluoroethene	S25
S30	$GEO'_{\rm s}$ analysis for cyclobutene	S26
S32	$GEO_{\rm s}'$ analysis for formaldehyde	S27
S34	$GEO'_{\rm s}$ analysis for formonitrile	S28
S36	$GEO'_{\rm s}$ analysis for HNCCN ⁺	S29
S38	$GEO_{ m s}'$ analysis for 1,3,4-thiadiazole \ldots \ldots \ldots \ldots \ldots \ldots	S30
S40	$GEO'_{\rm s}$ analysis for benzene \ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots	S31
S42	$GEO_{\rm s}'$ analysis for buta-1,3-diene \ldots	S32
S44	$GEO_{\rm s}'$ analysis for methyl formate	S33
S46	$GEO_{\rm s}'$ analysis for ethylene	S34
S48	$GEO_{\rm s}'$ analysis for furan	S35
S50	$GEO_{\rm s}'$ analysis for glyoxylic acid	S36
S52	$GEO'_{\rm s}$ analysis for furan-2,5-dione	S37
S54	$GEO_{\rm s}'$ analysis for ethynylbenzene	S38
S56	$GEO_{\rm s}'$ analysis for 1H-pyrrole \ldots	S39
S58	$GEO_{\rm s}'$ analysis for 1H-pyrimidine-2,4-dione	S40
S59	GEO^\prime contributions from errors in each of the bond length for phenyl radical	S40

S1 Further details on GEO and GEO'

For an approximate electronic structure method, the total error is given by:

$$\Delta E = \tilde{E}\left(\tilde{\mathbf{G}}_{0}\right) - E\left(\mathbf{G}_{0}\right),\tag{S1}$$

and thus contains errors both due to the approximate geometry and approximate energy (see Section 1 (*Introduction*) for the definition of the quantities in Eq S1). To decompose this error into GEO and non-geometric parts (*'purely energetic components'*, denoted by P and P' below), we add and subtract $E\left(\tilde{\mathbf{G}}_{0}\right)$ to the r.h.s of Eq. S1:

$$\Delta E = \underbrace{E\left(\tilde{\mathbf{G}}_{0}\right) - E\left(\mathbf{G}_{0}\right)}_{GEO \ge 0} + \underbrace{\tilde{E}\left(\tilde{\mathbf{G}}_{0}\right) - E\left(\tilde{\mathbf{G}}_{0}\right)}_{P}.$$
(S2)

Adding and subtracting $\tilde{E}(\mathbf{G}_0)$ to the r.h.s of Eq. S1 we obtain an alternative form of Eq. S2:

$$\Delta E = \underbrace{\tilde{E}\left(\tilde{\mathbf{G}}_{0}\right) - \tilde{E}\left(\mathbf{G}_{0}\right)}_{-GEO' \leq 0} + \underbrace{\tilde{E}\left(\mathbf{G}_{0}\right) - E\left(\mathbf{G}_{0}\right)}_{P'}.$$
(S3)

The signs of GEO and GEO' also dictate the following chain of inequalities:

$$P \le \Delta E \le P'. \tag{S4}$$

Since GEO is typically very accurately approximated by GEO', then we also have: $GEO \approx \frac{1}{2}(P'-P)$. As discussed in Ref. 1, for equilibrium structures (minima of potential energy surfaces), GEO and GEO' are always positive, whereas their signs for transition states (the first order saddle points of potential energy surfaces) are not definite.

S2 Computational details

All calculations except for ones stated in the next paragraph have been performed with the G16 package,² with *'tight'* convergence criteria for geometry optimizations, and with *'ultrafine'* grids for DFT calculations. For the LDA functional, the Slater exchange was combined with VWN correlation (SVWN).³

Calculations using 3c methods (Section 3.5), and using different version of MP2 for the phenyl radical, have been performed with the ORCA 5.0.0. package.⁴ These MP2 calculations have been performed within the resolution of the identity (RI) approximation.

S3 Set of accurate semixperimental B2se structures used in the present work

Figure S1: B2se set of molecules with their D values in 10^4 kcal/mol. The phenyl radical, as the only open-shell B2se species is excluded here and is analysed separately in Section 4.4.

Figure S2: *GEO*' for B3LYP/AVQZ (left) and TPSS/AVQZ (right) w.r.t. to CCse reference geometries (blue) and B2se reference geometries (red) for selected molecules

Figure S3: GEO' values on the log scale measured against the B2se structures of small molecules. For HF and CCSD(T) calculations, we use the cc-pVnZ basis set for the H atom and aug-cc-pCVnZ basis set for all other atoms, with n = 5 for molecules #1 to #5, and n = Q for molecules #6 and #7. For PBE, B2PLYP and B3PLYP calculations, aug-cc-pVQZ was used.

Figure S4: Plots showing how GEO' for the water molecule measured against its B2se structure changes as we go from HF to CCSD(T) via FC-CCSD and FC-CCSD(T), where FC stands for the frozen core approximation. Aug-cc-pCVnZ basis set was used for the O atom and cc-pVnZ for the H atom (note the *log*-scale on the *y*-axis.

S4 More basis set dependence results

Figure S5: Same as Figure 3, but for more approximations.

Figure S6: Same as Fig. S5, but for a full range of GEO' values for HF and BLYP.

Figure S7: γ' bars, same as Fig. 6, but within the VnZ basis set (no diffuse functions).

Figure S8: Same as Fig. S5, but showing the γ' results in place of GEO'.

S5 Accuracy of hybrids for molecular geometries as a function of the amount of exact exchange

Figure S9: Same as the bottom panel of Fig. 7, but showing the γ' results in place of GEO'.

Figure S10: Optimal α values (ones giving the lowest GEO') for α -PBE at the three basis sets for each of the B2se molecules. The dashed horizontal lines go through the α values that minimize mean GEO' for B2se. The molecules are ordered such that their optimal α within the AVQZ basis set increases as we go from the left to the right. The underlying molecular structures ordered in this way are given in Figure S13.

Figure S11: Mean GEO' values of the α -PBE and α -BLYP as a function of α (amount of the exact exchange mixing). Aug-cc-pVTZ basis set was used in all calculations. α -PBE and α -BLYP stand for exchange-correlation functionals where the α -amount of exact exchange replaces the semilocal exchange used in PBE and BLYP, respectively. BLYP employs B88 exchange⁵ and LYP correlation,⁶ whereas PBE employs PBE exchange and PBE correlation. ⁷ Note the *log*-scale on the *y*-axis.

Figure S12: Plots comparing AVDZ and VDZ mean GEO' for α -PBE as a function of α for the B2se dataset.

Figure S13: The order of molecules of the plot in Fig. S10.

S6 Geometric performance of Grimme's '3-c' composite methods

Figure S14: Same as Fig. 9, but for a full range on the y-axes.

S7 Breakdown of *GEO*′ into contributions due to errors in specific geometric parameters for selected B2se molecules

Figure S16: GEO'_{s} analysis for allene: (a) 2D structure; (b) GEO'_{s} , Δ_{A} , and Δ_{C} values from approximations within the AVQZ basis set (note the *log*-scale on the y axes). The breakdown of GEO'_{s} into different components from approximate methods within: (c) AVQZ; (d) AVTZ; (e) AVDZ basis set. The approximations in all panels are ranked by the GEO'_{s} values in (c).

Figure S18: $GEO'_{\rm s}$ analysis for acetylene: (a) 2D structure; (b) $GEO'_{\rm s}$, Δ_A , and Δ_C values from approximations within the AVQZ basis set (note the *log*-scale on the y axes). The breakdown of $GEO'_{\rm s}$ into different components from approximate methods within: (c) AVQZ; (d) AVTZ; (e) AVDZ basis set. The approximations in all panels are ranked by the $GEO'_{\rm s}$ values in (c).

Figure S20: $GEO'_{\rm s}$ analysis for buta-1,3-diyne: (a) 2D structure; (b) $GEO'_{\rm s}$, Δ_A , and Δ_C values from approximations within the AVQZ basis set (note the *log*-scale on the y axes). The breakdown of $GEO'_{\rm s}$ into different components from approximate methods within: (c) AVQZ; (d) AVTZ; (e) AVDZ basis set. The approximations in all panels are ranked by the $GEO'_{\rm s}$ values in (c).

Figure S22: $GEO'_{\rm s}$ analysis for fluoroethene: (a) 2D structure; (b) $GEO'_{\rm s}$, Δ_A , and Δ_C values from approximations within the AVQZ basis set (note the *log*-scale on the y axes). The breakdown of $GEO'_{\rm s}$ into different components from approximate methods within: (c) AVQZ; (d) AVTZ; (e) AVDZ basis set. The approximations in all panels are ranked by the $GEO'_{\rm s}$ values in (c).

Figure S24: $GEO'_{\rm s}$ analysis for chlorofluoromethane: (a) 2D structure; (b) $GEO'_{\rm s}$, Δ_A , and Δ_C values from approximations within the AVQZ basis set (note the *log*-scale on the y axes). The breakdown of $GEO'_{\rm s}$ into different components from approximate methods within: (c) AVQZ; (d) AVTZ; (e) AVDZ basis set. The approximations in all panels are ranked by the $GEO'_{\rm s}$ values in (c).

Figure S26: $GEO'_{\rm s}$ analysis for prop-2-enal: (a) 2D structure; (b) $GEO'_{\rm s}$, Δ_A , and Δ_C values from approximations within the AVQZ basis set (note the *log*-scale on the y axes). The breakdown of $GEO'_{\rm s}$ into different components from approximate methods within: (c) AVQZ; (d) AVTZ; (e) AVDZ basis set. The approximations in all panels are ranked by the $GEO'_{\rm s}$ values in (c).

Figure S28: $GEO'_{\rm s}$ analysis for (Z)-1-chloro-2-fluoroethene: (a) 2D structure; (b) $GEO'_{\rm s}$, Δ_A , and Δ_C values from approximations within the AVQZ basis set (note the *log*-scale on the y axes). The breakdown of $GEO'_{\rm s}$ into different components from approximate methods within: (c) AVQZ; (d) AVTZ; (e) AVDZ basis set. The approximations in all panels are ranked by the $GEO'_{\rm s}$ values in (c).

Figure S30: $GEO'_{\rm s}$ analysis for cyclobutene: (a) 2D structure; (b) $GEO'_{\rm s}$, Δ_A , and Δ_C values from approximations within the AVQZ basis set (note the *log*-scale on the y axes). The breakdown of $GEO'_{\rm s}$ into different components from approximate methods within: (c) AVQZ; (d) AVTZ; (e) AVDZ basis set. The approximations in all panels are ranked by the $GEO'_{\rm s}$ values in (c).

Figure S32: $GEO'_{\rm s}$ analysis for formaldehyde: (a) 2D structure; (b) $GEO'_{\rm s}$, Δ_A , and Δ_C values from approximations within the AVQZ basis set (note the *log*-scale on the y axes). The breakdown of $GEO'_{\rm s}$ into different components from approximate methods within: (c) AVQZ; (d) AVTZ; (e) AVDZ basis set. The approximations in all panels are ranked by the $GEO'_{\rm s}$ values in (c).

Figure S34: $GEO'_{\rm s}$ analysis for formonitrile: (a) 2D structure; (b) $GEO'_{\rm s}$, Δ_A , and Δ_C values from approximations within the AVQZ basis set (note the *log*-scale on the y axes). The breakdown of $GEO'_{\rm s}$ into different components from approximate methods within: (c) AVQZ; (d) AVTZ; (e) AVDZ basis set. The approximations in all panels are ranked by the $GEO'_{\rm s}$ values in (c).

Figure S36: $GEO'_{\rm s}$ analysis for HNCCN⁺: (a) 2D structure; (b) $GEO'_{\rm s}$, Δ_A , and Δ_C values from approximations within the AVQZ basis set (note the *log*-scale on the y axes). The breakdown of $GEO'_{\rm s}$ into different components from approximate methods within: (c) AVQZ; (d) AVTZ; (e) AVDZ basis set. The approximations in all panels are ranked by the $GEO'_{\rm s}$ values in (c).

Figure S38: $GEO'_{\rm s}$ analysis for 1,3,4-thiadiazole: (a) 2D structure; (b) $GEO'_{\rm s}$, Δ_A , and Δ_C values from approximations within the AVQZ basis set (note the *log*-scale on the y axes). The breakdown of $GEO'_{\rm s}$ into different components from approximate methods within: (c) AVQZ; (d) AVTZ; (e) AVDZ basis set. The approximations in all panels are ranked by the $GEO'_{\rm s}$ values in (c).

Figure S40: GEO'_{s} analysis for benzene: (a) 2D structure; (b) GEO'_{s} , Δ_{A} , and Δ_{C} values from approximations within the AVQZ basis set (note the *log*-scale on the y axes). The breakdown of GEO'_{s} into different components from approximate methods within: (c) AVQZ; (d) AVTZ; (e) AVDZ basis set. The approximations in all panels are ranked by the GEO'_{s} values in (c).

Figure S42: GEO'_{s} analysis for buta-1,3-diene: (a) 2D structure; (b) GEO'_{s} , Δ_{A} , and Δ_{C} values from approximations within the AVQZ basis set (note the *log*-scale on the y axes). The breakdown of GEO'_{s} into different components from approximate methods within: (c) AVQZ; (d) AVTZ; (e) AVDZ basis set. The approximations in all panels are ranked by the GEO'_{s} values in (c).

Figure S44: $GEO'_{\rm s}$ analysis for methyl formate: (a) 2D structure; (b) $GEO'_{\rm s}$, Δ_A , and Δ_C values from approximations within the AVQZ basis set (note the *log*-scale on the y axes). The breakdown of $GEO'_{\rm s}$ into different components from approximate methods within: (c) AVQZ; (d) AVTZ; (e) AVDZ basis set. The approximations in all panels are ranked by the $GEO'_{\rm s}$ values in (c).

Figure S46: $GEO'_{\rm s}$ analysis for ethylene: (a) 2D structure; (b) $GEO'_{\rm s}$, Δ_A , and Δ_C values from approximations within the AVQZ basis set (note the *log*-scale on the y axes). The breakdown of $GEO'_{\rm s}$ into different components from approximate methods within: (c) AVQZ; (d) AVTZ; (e) AVDZ basis set. The approximations in all panels are ranked by the $GEO'_{\rm s}$ values in (c).

Figure S48: GEO'_{s} analysis for furan: (a) 2D structure; (b) GEO'_{s} , Δ_{A} , and Δ_{C} values from approximations within the AVQZ basis set (note the *log*-scale on the y axes). The breakdown of GEO'_{s} into different components from approximate methods within: (c) AVQZ; (d) AVTZ; (e) AVDZ basis set. The approximations in all panels are ranked by the GEO'_{s} values in (c).

Figure S50: $GEO'_{\rm s}$ analysis for glyoxylic acid: (a) 2D structure; (b) $GEO'_{\rm s}$, Δ_A , and Δ_C values from approximations within the AVQZ basis set (note the *log*-scale on the y axes). The breakdown of $GEO'_{\rm s}$ into different components from approximate methods within: (c) AVQZ; (d) AVTZ; (e) AVDZ basis set. The approximations in all panels are ranked by the $GEO'_{\rm s}$ values in (c).

Figure S52: $GEO'_{\rm s}$ analysis for furan-2,5-dione: (a) 2D structure; (b) $GEO'_{\rm s}$, Δ_A , and Δ_C values from approximations within the AVTZ basis set (note the *log*-scale on the y axes). The breakdown of $GEO'_{\rm s}$ into different components from approximate methods within: (c) AVTZ; (d) AVDZ basis set. The approximations in both panels are ranked by the $GEO'_{\rm s}$ values in (c).

Figure S54: $GEO'_{\rm s}$ analysis for ethynylbenzene: (a) 2D structure; (b) $GEO'_{\rm s}$, Δ_A , and Δ_C values from approximations within the AVTZ basis set (note the *log*-scale on the y axes). The breakdown of $GEO'_{\rm s}$ into different components from approximate methods within: (c) AVTZ; (d) AVDZ basis set. The approximations in both panels are ranked by the $GEO'_{\rm s}$ values in (c).

Figure S56: $GEO'_{\rm s}$ analysis for 1H-pyrrole: (a) 2D structure; (b) $GEO'_{\rm s}$, Δ_A , and Δ_C values from approximations within the AVTZ basis set (note the *log*-scale on the y axes). The breakdown of $GEO'_{\rm s}$ into different components from approximate methods within: (c) AVTZ; (d) AVDZ basis set. The approximations in both panels are ranked by the $GEO'_{\rm s}$ values in (c).

Figure S58: $GEO'_{\rm s}$ analysis for 1H-pyrimidine-2,4-dione: (a) 2D structure; (b) $GEO'_{\rm s}$, Δ_A , and Δ_C values from approximations within the AVTZ basis set (note the *log*-scale on the y axes). The breakdown of $GEO'_{\rm s}$ into different components from approximate methods within: (c) AVTZ; (d) AVDZ basis set. The approximations in both panels are ranked by the $GEO'_{\rm s}$ values in (c).

Figure S59: GEO' contributions from errors in each of the bond length for the phenyl radical. AVTZ used in all calculations.

References

- Vuckovic, S.; Burke, K. Quantifying and Understanding Errors in Molecular Geometries. *The Journal of Physical Chemistry Letters* **2020**, *11*, 9957–9964.
- (2) Frisch, M. J.; Trucks, G. W.; Schlegel, H. B.; Scuseria, G. E.; Robb, M. A.; Cheeseman, J. R.; Scalmani, G.; Barone, V.; Petersson, G. A.; Nakatsuji, H.; Li, X.; Caricato, M.; Marenich, A. V.; Bloino, J.; Janesko, B. G.; Gomperts, R.; Mennucci, B.; Hratchian, H. P.; Ortiz, J. V.; Izmaylov, A. F.; Sonnenberg, J. L.; Williams-Young, D.; Ding, F.; Lipparini, F.; Egidi, F.; Goings, J.; Peng, B.; Petrone, A.; Henderson, T.; Ranasinghe, D.; Zakrzewski, V. G.; Gao, J.; Rega, N.; Zheng, G.; Liang, W.; Hada, M.; Ehara, M.; Toyota, K.; Fukuda, R.; Hasegawa, J.; Ishida, M.; Nakajima, T.; Honda, Y.; Kitao, O.; Nakai, H.; Vreven, T.; Throssell, K.; Montgomery, J. A., Jr.; Peralta, J. E.; Ogliaro, F.; Bearpark, M. J.; Heyd, J. J.; Brothers, E. N.; Kudin, K. N.; Staroverov, V. N.; Keith, T. A.; Kobayashi, R.; Normand, J.; Raghavachari, K.; Rendell, A. P.; Burant, J. C.; Iyengar, S. S.; Tomasi, J.; Cossi, M.; Millam, J. M.; Klene, M.; Adamo, C.; Cammi, R.; Ochterski, J. W.; Martin, R. L.; Morokuma, K.; Farkas, O.; Foresman, J. B.; Fox, D. J. Gaussian?16 Revision C.01. 2016; Gaussian Inc. Wallingford CT.
- (3) Vosko, S. H.; Wilk, L.; Nusair, M. Accurate spin-dependent electron liquid correlation energies for local spin density calculations: a critical analysis. *Canadian Journal of Physics* **1980**, *58*, 1200–1211.
- (4) Neese, F.; Wennmohs, F.; Becker, U.; Riplinger, C. The ORCA quantum chemistry program package. *The Journal of Chemical Physics* **2020**, *152*, 224108.
- (5) Becke, A. D. Density-functional exchange-energy approximation with correct asymptotic behavior. *Phys. Rev. A* **1988**, *38*, 3098.
- (6) Lee, C.; Yang, W.; Parr, R. G. Development of the Colle-Salvetti correlation-energy formula into a functional of the electron density. *Physical review B* **1988**, *37*, 785.

(7) Perdew, J. P.; Burke, K.; Ernzerhof, M. Generalized Gradient Approximation Made Simple.
 Phys. Rev. Lett. **1996**, *77*, 3865.