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Table S1: MAEs in kcal/mol of MP2, SPL, MPACF-1 and SPL2 for the three
subsets of the S66 dataset.

method ‘H—bonds dispersion others

MP2 0.18 0.82 0.41
SPL 0.42 0.42 0.19
MPACF-1 0.15 0.45 0.17
SPL2 0.19 0.30 0.12

Table S2: MAEs of 3 different reference calculations relative to each other,
as well as the MAEs of MP2, SPL, SPL2, MPACEF-1 relative to each of the
three references for the L7 dataset. Regardless of the reference, SPL gives
improvement over MP2 and SPL2 and MPACF-1 give improvements over SPL.
Data from ref. 1 for L7 were obtained from DLPNO-CCSD(T) and a newly
developed CBS extrapolation scheme,! ref. 2 using QCISD(T)/CBS? and ref.
3 using LNO-CCSD(T)/CBS(Q,5)) (Local Natural Orbital).® We used ref. 1 of
Grimme and co-workers in the main paper. For interaction energies of individual
complexes, see Fig. S2

MAE ref. 1 ref. 2 ref. 3
ref. 1 0 1.70  0.77
ref. 2 1.70 0 1.36
ref. 3 077 136 O
MP2 874 720 855
SPL 3.83 259 3.74
SPL2 0.80 126 0.95
MPACF-1 | 2.32 150 2.42
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Figure S1: The SPL2 with and without size consistency corrections (SCC) plotted for the
Kry vs the MPACF-1 method with and without SSC and the reference CCSD(T) data. For
a complex composed by identical fragments A, the following equation, W™model (NW(A)) =
NWmedel(W(A)), is a size-extensivity requirement for adiabatic connection model functions,
Wwmedel ' with W(A) = {W,(A),...,W;(A)} being a compact notation for the i input ingre-
dients for fragment A and N the number of fragments.* SPL2 violates this equation, while
MPACF-1 obeys it. Because of that, without the SCC, interaction energies of SPL2 do not
vanish even for systems that dissociate into equal fragments as it can be seen from the Kry
example here. Since MPACF-1 is size-extensive, the addition of the SCC does not change
the Kry dissociation curve, as it is already correct in the dissociation limit. In any case, all
our models must be used with the SCC as it ensures that the interaction energies vanish in
the dissociation limits (at least for systems dissociating into fragments with non-degenerate
ground-state). Without the SCC, meaningless interaction energies would be obtained in
some instances [see Ref. 4].
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Figure S2: Interaction energies of MP2, SPL, SPL2, B3LYP-D3 and B2PLYP as well as
three different reference (ref. 1 is Grimme et al.,' ref. 2 is Sedlak et al.? and ref. 3 is
Al-Hamdani et al.?) data plotted for all 7 complexes of the L7 dataset. For further details
on these references, see Table S1.
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Figure S3: The interaction energies of MP2, SPL, SPL2, MPACF-1, B3LYP-D3 and B2PLYP

as well as reference CCSD(T) curves for Hes. B3LYP even upon addition of D3 is producing
an unphysical curve.
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Figure S4: The interaction energies of MP2, SPL, SPL2, MPACF-1, B3LYP-D3 and B2PLYP
as well as reference CCSD(T) curves for Nes.

S6



0.2

Ar2
01
2
s og B2PLYP
5
2 _p.
g B3LYP -D3
._% MPACF-1
< -0.2
-0 MP2
0.9 1.0 1.1 1.2 13 14 15
RIR,

Figure Sb: The interaction energies of MP2, SPL, SPL2, MPACF-1, B3LYP-D3 and B2PLYP
as well as reference CCSD(T) curves for Ar,.
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Figure S6: The interaction energies of MP2, SPL, SPL2, MPACF-1, B3LYP-D3(BJ) and
B2PLYP as well as reference CCSD(T) curves for Benzene dimer.
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Figure S7: The interaction energies of MP2, SPL, SPL2, MPACF-1, B3LYP-D3(BJ) and
B2PLYP as well as reference CCSD(T) curves for Pyridine dimer.

S9



-2.0

binding energy (kcal/mol)

|
N
(S

0.9 1.0 11 1.2 1.3 14 15
RIR,

Figure S8: The interaction energies of MP2, SPL, SPL2, MPACF-1, B3LYP-D3 and B2PLYP
as well as reference CCSD(T) curves for C,H,-F,
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