Supporting Information for "Nonlocal functionals inspired by the strongly interacting limit of DFT: exact constraints and implementation"

Stefan Vuckovic, Hilke Bahmann †

August 2, 2023

^{*}Department of Chemistry, University of Fribourg, Fribourg, Switzerland. Email: stefan.vuckovic@unifr.ch

[†]Physical and Theoretical Chemistry, University of Wuppertal, Gaußstr. 20 42119 Wuppertal, Germany. Email: bahmann@uni-wuppertal.de

d parameter

Figure S1: MAE of MRF's repulsion energies from Table 2 with the d parameter. The CCSD electron repulsion energies also of Table S2 are taken as a reference.

mol8	mol19b	mol16b	mol16a	mol04a	mol03a	mol02a	mol01a	Propyne	Methanol	FMe	CH2F2	
AVQZ	AVQZ	AVQZ	AVTZ	AVQZ	AVQZ	AVQZ	AVQZ	AVQZ	AVTZ	AVQZ	AVTZ	CCSD basis
25.75383875	55.08991511	49.5583119	58.1145326	130.1496729	137.7964411	37.21828777	30.98895768	95.82463082	80.64586625	88.97299792	167.7566698	CCSD
25.84682039	55.12944514	49.57898366	58.1880227	130.6291043	138.2605503	37.63707803	31.24678302	95.87585568	81.04434112	89.45138792	168.4513562	$d{=}0.8$
25.80688404	55.06625349	49.51899092	58.11881183	130.5054178	138.1324068	37.58805132	31.20249964	95.77532369	80.95604763	89.35869148	168.3049478	d = 0.1
25.76857073	55.00594814	49.46186223	58.05262623	130.3869585	138.0099612	37.54108442	31.15985267	95.67926312	80.87145548	89.27072946	168.1665163	$d{=}0.12$
25.73147587	54.9478869	49.40693116	57.98876269	130.2728415	137.8923541	37.49595068	31.11855214	95.5866576	80.78995106	89.18680475	168.0349339	$d{=}0.14$
25.69541228	54.89170961	49.35376769	57.92680945	130.1625057	137.7789979	37.45245316	31.07843102	95.49685565	80.71112812	89.10647074	167.909516	$d{=}0.16$
25.6602495	54.83717324	49.30208778	57.86645005	130.0555458	137.6694771	37.41045298	31.03936063	95.40943818	80.63471122	89.02935138	167.7897011	$d{=}0.18$
25.62586569	54.78409782	49.25171695	57.8075251	129.9516691	137.563475	37.36986689	31.00127358	95.32409889	80.56050122	88.95517028	167.675053	$d{=}0.2$
25.46361638	54.53677772	49.01547706	57.53014688	129.4715444	137.0787346	37.18510361	30.82332294	94.92266035	80.2174965	88.62157615	167.1674811	$d{=}0.3$
25.31442083	54.31376049	48.7994985	57.27553615	129.0458302	136.6567134	37.02582563	30.66286905	94.55434117	79.91329727	88.33815502	166.7480617	d=0.4
0.092981638	0.039530031	0.020671759	0.073990104	0.479431369	0.464109159	0.418790258	0.257825344	0.051224859	0.39847487	0.478389997	0.694686363	$d{=}0.8$

Table S2: Electron repulsion energies $(W_{\lambda=1}[\rho] \text{ of Eq. } 3 + \text{Hartree energy})$; from CCSD vs. those of MRF evaluated with Eq. 56 as a function of *d* parameter. Second column shows the basis set for CCSD. MRF has been evaluated at the HF/def2-SVP densities. Molecules are ordered in this Table as in Fig. 8 (for geometries see the zipped file).

For every grid point r_g :

For $u = u_{min}$, u_{max} , incr: Calculate $N_e(r_g, u)$ If $N_e(r_g, u) > N - 0.0001$: $u_{max} = u$ Step 1 exit $incr = \frac{u_{max} - u_{min}}{999}$: For $u = u_{min}$, u_{max} , incr: Calculate $N_e(r_g, u)$ For i = 1, N - 1: For $u = u_{min}$, u_{max} , incr: If $N_e(r_g, u) > i$: $\begin{aligned} x1 &= u - incr \\ y1 &= N_e\bigl(r_g, u - incr\bigr) - i \end{aligned}$ Step 2 $x^2 = u$ $y^{2} = N_{e}(r_{g}, u) - i$ $a_{i+1} = -y^{2} \frac{x^{2} - x^{1}}{y^{2} - y^{1}} + x^{2}$ For i = 2, N: Step 3 Calculate $\sigma_i(r_g)$ For i = 1, N - 1: Step 4 Calculate $R_{i+1}(r_g)$ from straight line interpolation (see step 2)

Figure S2: Pseudocode describing the implementation of MRF.