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The development of density functional approximations stands at a crossroad: while machine-learned func-
tionals show potential to surpass their human-designed counterparts, their extrapolation to unseen chemistry
lags behind. Here we assess how well the recent Deep Mind 21 (DM21) machine-learned functional [Science
374, 1385–1389 (2021)], trained on main-group chemistry, extrapolates to transition metal chemistry (TMC).
We show that DM21 demonstrates comparable or occasionally superior accuracy to B3LYP for TMC, but
consistently struggles with achieving self-consistent field convergence for TMC molecules. We also compare
main-group and TMC machine-learning DM21 features to shed light on DM21’s challenges in TMC. We finally
propose strategies to overcome limitations in the extrapolative capabilities of machine-learned functionals in
TMC.

I. INTRODUCTION

The accuracy of density functional approximations
(DFAs) has become a limiting factor in scientific discov-
eries driven by electronic structure calculations and em-
powered by artificial intelligence1–5. At the same time,
the development of DFAs is currently in ”no man’s land”.
On the one hand, machine-learned DFAs hold promise
to overcome the known deficiencies of human-designed
functionals6–13. Yet, their transferability14 remains a
major challenge, essential for the broad applicability seen
in their human-designed counterparts, such as PBE15 or
B3LYP16–19.

A major step forward in machine learning of accurate
DFAs has been achieved by the development of the Deep
Mind 21 (DM21) functional8. From the point of view
of DFA’s classification, DM21 is a machine-learned lo-
cal hybrid22 (see Ref.23 for a very recent comparison be-
tween human-designed local hybrids and DM21). With
the inclusion of fractional charges (FC) and fractional
spin (FS) data in the training, DM21 has addressed some
of the long-standing deficiencies of standard DFAs linked
to their improper behavior for systems with FC and
FS24. However, the training of DM21 excludes elements
heavier than Krypton, posing questions about its perfor-
mance in transition metal chemistry (TMC), a realm gen-
erally challenging for quantum chemistry due to strong
correlation effects and a large number of multireference
cases20,25–27.

Trained on fractional spin (FS) DM21 can capture
some multi-reference effects in main group chemistry,
such as stretching covalent bonds, though it encounters
difficulties at intermediate bond distances. For exam-
ple, training DM21 on the hydrogen atom with zero
polarization ensures the accurate H2 dissociation limit
without breaking spin symmetry. Focusing on dimers,
main-group dimers primarily exhibit multireference ef-
fects when their bonds are stretched, whereas transition
metal dimers display these effects even at their equi-
librium geometries. Thus, the difference in the nature
of multireference effects between main-group and TMC
raises the question of whether DM21’s ability to capture

such effects in the former can extend to the latter. But,
given the known shortcomings of standard functionals
like B3LYP in describing multireference transition met-
als (TM), such as TM dimers, even a far less stringent
question arises: Does DM21, which was pretrained on
B3LYP densities, perform at least not much worse in this
domain than B3LYP itself?

Unfortunately, in this paper, we show that the an-
swers to both questions regarding DM21’s performance
in TMC are negative. While DM21, once it converges,
yields accuracy for transition metal compounds compa-
rable (in some cases even superior) to B3LYP, it consis-
tently struggles with SCF convergence. We illustrate the
performance of DM21 for TMC in Fig. 1 with beeswarm
plots showing errors of B3LYP and DM21 functionals
(see the caption of the figure for details). The left panel
of Fig. 1 shows DM21’s potential to surpass B3LYP in
TMC. The data indicate a decrease in median error from
3 kcal/mol for self-consistent B3LYP calculations to 2.3
kcal/mol when DM21 is applied to B3LYP orbitals. Self-
consistent DM21 calculations are in between the two in
terms of accuracy with the median error of 2.6 kcal/mol
(other error metrics will follow later). The right panel of
Fig. 1 gives a more critical assessment of DM21 for TMC
as it includes systems that failed to converge with this
functional. For these cases, we (arbitrarily) set errors of
50 kcal/mol, a number reflecting the expected upper limit
of DFT errors for the considered TMC reactions. When
all reactions are considered in the right panel, DM21 eval-
uated on B3LYP densities remains accurate; however,
roughly 30% of the reactions do not reach SCF conver-
gence under DM21. The major convergence issues with
DM21 not only limit its practical applicability for TMC
but could also render its use impossible in this area.

As we will show later in the paper, these convergence
issues of DM21 cannot be resolved by standard SCF set-
ting adjustments. We demonstrate this by going beyond
an SCF procedure and employing a direct orbital opti-
mization algorithm for DM21 cases that could not con-
verge with our SCF protocol. Even then, the DM21 con-
vergence still fails, underscoring a fundamental limitation
in DM21’s ability to extrapolate to transition metals.
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FIG. 1: Beeswarm plots with errors for B3LYP and DM21 functionals across TMC117 dataset variations (see the
text for the dataset description). The number at the horizontal bar denotes the median absolute error. The

TMC117 dataset built from the TMC151 dataset20 of Chan and co-workers by excluding large systems where DM21
calculations were prohibitively resource-intensive. The left plot shows 83 reactions which we could converge with
DM21, whereas the right shows all 117 reactions, where we set 50 kcal/mol errors to non-converged cases. A@B
denotes functional A’s evaluation on densities/orbitals from functional B’s Kohn-Sham calculation. The D3(BJ)

dispersion correction21 has been applied to all energies.

In addition to testing DM21’s accuracy for TMCs, we
analyze SCF convergence failures for specific TMC sys-
tems, compare DFT features of TM molecules against
their main-group counterparts (e.g., CrO vs. CaO/CO),
and demonstrate that the former can be easily missed
when training machine-learned functionals.

The paper is organized as follows, computational de-
tails are outlined in Sec II, followed by Section III with
the key numerical and convergence results, Section IV
with the analysis of DFT features. Finally, Section V is
devoted to conlcusions and outlook.

II. COMPUTATIONAL DETAILS

A. Computational setup

All DFT calculations in this work have been obtained
in PySCF28. We use the TMC15120 transition-metal
datasets compilation, developed by Chan et al., to as-
sess the accuracy of DM21 in TMC. TMC151 includes the
TMD60 dataset29, featuring TM dimer dissociation ener-
gies; MOR41, with 41 metal-organic reaction energies30;
and TMB50 containing barriers of complexes of second-
and third-row transition metals20. The current imple-
mentation of DM21 is very costly. For example, a sin-
gle SCF iteration for n-decane on 8 CPU cores with
a def2-QZVP basis set takes approximately 7 hours,
whereas a complete B2PLYP double hybrid calculation31

with the same settings is completed in about 13 min-
utes. Therefore, due to the currently high cost of DM21,
we excluded reactions with large systems from MOR41
and TMB50, leading to their TMB40 and MOR17 sub-
sets, respectively. TMD60 was kept as is, leading to
the streamlined TMC117 subset of TMC151 (TMB40 +
MOR17 + TMD60). For TMD60 calculations, we use the

def2-QZVP basis set, while for TMB40 and MOR17 we
use the def2-TZVP basis set (with corresponding effec-
tive core potentials as in Ref.20 for heavier atoms when
applicable)32. Resolution of identity approximations are
used with corresponding auxiliary basis sets33 to acceler-
ate the calculation.

To better understand DM21’s relative accuracy to
B3LYP for TMC, in addition to assessing their self-
consistent performances, we also test their accuracies
using cross-evaluated densities34 (DM21@B3LYP and
B3LYP@DM21, where A@B denotes an evaluation of
a functional A on the electron density computed by
functional B). For all calculations, we also include the
D3(BJ) dispersion correction with the Becke-Johnson
damping function21 (the results from the paper with-
out D3(BJ) are given in the SI). Since self-consistent
DM21 and B3LYP use the same D3(BJ) parameters8, we
safely assume that the same parameters could be used for
DM21@B3LYP and B3LYP@DM21.

B. SCF Protocol

We establish a self-consistent field (SCF) protocol for
achieving system convergence with DM21. Our method-
ology starts with SCF Strategy A, advancing to Strat-
egy B if convergence is not achieved, and then to Strat-
egy C if necessary. As said, we use PySCF28 for all
our SCF calculations, and inspired by the Orca’s SCF
settings35, we use the following set of A to C Strategies:

Strategy A: Level shifting is set as 0.25, Damping
factor is 0.7, Direct Inversion in the Iterative Subspace
DIIS will start at cycle 12 (some of the settings are similar
to NormalConv SCF protocol in Orca).

Strategy B: Level shifting is set as 0.25, Damping
factor is 0.85, DIIS starts at cycle 0. (some of the settings
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are similar to SlowConv SCF protocol in Orca).
Strategy C: Level shifting is set as 0.25, Damping

factor is 0.92, DIIS starts at cycle 0 (some of the settings
are similar to VerySlowConv SCF protocol in Orca).
For cases that don’t converge we also (unsuccessfully

in all attempts) employ Strategy D. This strategy is
fundamentally different from A–C as it involves direct
optimization of the energy with respect to orbitals. It
may thus, in principal, converge for cases where standard
SCF procedures break down. Full details are provided in
Appendix A.

Between Strategies A–D we have a set of increasingly
difficult, but in principal increasingly robust, ways to
converge DFAs even in difficult systems. We are now
ready to put these strategies into practice, and see how
well DM21 performs. Further computational details for
all approaches are given in Appendix B.

III. RESULTS

A. Convergence of DM21 for transition metal dimers

Element Atom H F Cl Br O S
Sc A A A A A A A
Ti A A A A A A A
V x x x x x B x
Cr A x x x x x x
Mn A A A A x x x
Fe x A A A A B x
Co A A A A A A A
Ni A A A A A A A
Cu A A A A A A A
Zn A A A A A A A

TABLE I: SCF convergence of all TMD60 species using
different strategies presented in Section II B. ’x’ denotes
species that failed to converge under any strategy. A
letter A-D indicates the strategy that successfully
converged the (di)atom. No system was successfully

converged using strategies C or D..

Before the detailed analysis of DM21 for the TMC117
dataset, we first focus on the SCF convergence issues
for TMCs, which, as we will show, represent the major
obstacle to the use of DM21 in TMC applications.

In Tab. I, we present the convergence success of dif-
ferent SCF strategies for each system within the TMD60
dataset. As said, we start with the SCF strategy A and
move to B or C only if necessary. From Tab. I, we can
see that for the TMD60 dataset, which includes 60 dimers
and 16 atoms, DM21 SCF convergence was successful for
57 systems (45 dimers/14 atoms) using strategy A. B
managed to converge 2 additional dimers, while C and
direct energy optimization with D did not lead to fur-
ther convergence. In stark contrast, all 152 species in
the W4-11 (main-group atomization energies)36 dataset

converged under Strategy A, likely reflecting the use
of main-group atomization energies in DM21’s training.
At the same time, B3LYP’s SCF convergence for TMD
species was far easier, with almost all directly converging
using A and the remaining five via B. We can also see
from Tab. I that species with V and Cr atoms were par-
ticularly difficult for SCF convergence, where only the
VO dimer and the Cr atom converged. We note that the
use of smaller basis set than def2-QZVP, which we use for
TMD60, can lead to the convergence of a few additional
species (e.g., within Strategy D and the cc-PVDZ basis
set, we could also converge the V atom).

The failures of strategies A-C strategies here raise the
question whether the problem lies in SCF approach or
DM21. This was indeed the reason why we introduced
Strategy D, which involves direct optimization of or-
bitals and thus bypasses SCF entirely. In principle, D
can converge any energy functional that is bounded from
below; and can bypass issues with orbital (re-)ordering
that are usually treated by level shifting. But, in prac-
tice, it requires the energy to be sufficiently smooth with
respect to variations in the orbitals. That is, the DFA
must vary smoothly in its input features since orbital-
dependence is inherited from the (meta-)densities and
energy densities.

Therefore, DM21’s failure to converge for some sys-
tems using D suggests that the functional is highly non-
smooth (i.e. nearly discontinuous) for combinations of
input features that are ‘close’ enough to the minima to be
sampled during optimization. The presence of (near) dis-
continuities is not surprising in a machine-learned DFA
– the exact density functional is very complicated and
the DFA needs to capture that complexity by fitting to
training data, so will inherit a bias toward its training
data. What is surprising is that even simple systems,
like TM atoms, can have combinations of features that
are outside the training data. Section IV will therefore
explore this point in more detail.

Fig. 2 illustrates the convergence behavior of Co atom
and FeS using B3LYP and DM21. The Co atom con-
verges under B3LYP with strategies A and B, with
a smoother convergence observed using B [Fig. 2(a)].
For the same atom, DM21’s SCF convergence initiated
with B3LYP-converged orbitals proceeds smoothly with
Strategy A. By contrast, for the FeS molecule, DM21
fails to converge with any of the strategies A, B, or C,
as indicated by the erratic energy values with no stabi-
lization even over an extended number of SCF iterations
(Fig. 2(d)). However, Fig. 2(c) shows that B3LYP en-
counters no such convergence issues with FeS.

Fig. 3(a) displays DM21 SCF convergence attempts
for both CaO and CrO using Strategy A. It shows
straightforward convergence for the main-group oxide
CaO, whereas the transition metal oxide CrO fails to
converge with the same strategy. Fig. 3(b) demonstrates
that strategies B, C, and D are also unsuccessful in
achieving SCF convergence for CrO with DM21. Sec-
tion IV will analyze the input features of CaO and CrO
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FIG. 2: Energy change (zeroed at first iteration) during SCF cycles of Co and FeS with B3LYP and DM21. Note
the semi-logarithmic scale in (a).

to shed light on their different DM21 SCF convergence
behaviors.

The fact that Strategy D [see Fig. 3(b)] tends to in-
crease the energy of CrO is worth commenting on. This
behaviour reflects cross-contamination between two nu-
merical issues used in D: 1) the use of an approximate
Hessian in Newton iteration for the orbital optimization
scheme; 2) non-smoothness of the DM21 DFA as a func-
tional of orbitals. Issue 1 [see Eq. (A1) in Appendix A
below] can lead the orbital optimization algorithm to
sometimes “climb up hills” when the approximate Hes-
sian sometimes has the wrong ‘sign’. In well-behaved sys-
tems, or with well-behaved DFAs, the ascent is followed
by a descent once the ‘sign’ gets fixed – indeed, ascent
sometimes helps the algorithm iterate to the global min-
ima. But Issue 2 (evidenced by very large fluctuations in
the energy) makes both the Hessian and its approxima-
tion de facto discontinuous. Discontinuities can trap the
algorithm in regions of orbital space where the energy
varies rapidly. Continued iteration may eventually find
the minima, although the fluctuations of around 1 Ha

(i.e. ∼ 100× MAE in atomization energies of converged
cases) in CrO certainly make this challenging.
We finally note that the failure to converge using

Strategies A–D does not strictly prove that the sys-
tem cannot be converged (indeed it is unlikely that a
minimum does not exist). But, the fact that these sys-
tems fail even in Strategy D, which attempts to directly
minimize the energy with respect to orbitals, reveals that
convergence is extremely difficult.

B. DM21 performance for TMC117

After analyzing DM21 convergence difficulties in the
TMD dataset, Tab. II assesses DM21 across TMC117
datasets: TMD60, TMB40, and MOR17. For the
DM21-converged subsets of these datasets, labeled
”sub”, we present mean absolute errors (MAEs) for
the following functional combinations: B3LYP@B3LYP,
DM21@B3LYP, DM21@DM21, and B3LYP@DM21. For
full datasets (”whole”), only combinations evaluated at
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FIG. 3: Energy change (zeroed at first iteration) during SCF cycles within DM21 for (a) CaO and CrO using
Strategy A. (b) CrO using Strategy B, C, D.

dataset
TMB40 TMD60 MOR17

whole sub whole sub whole
B3LYP@B3LYP 2.43 1.61 6.00 6.41 5.31
DM21@B3LYP 1.62 1.51 6.88 6.25 3.41
DM21@DM21 - 1.81 - 6.59 3.70
B3LYP@DM21 - 1.36 - 6.60 4.86

Number of Reactions 40 27 60 39 17

TABLE II: MAEs (kcal/mol) of different functionals.
D3(BJ) correction has been added to all functionals.

B3LYP densities are shown due to convergence issues,
highlighting B3LYP@B3LYP and DM21@B3LYP. The
table indicates DM21 non-convergence for 34 systems
within TMC117 (13 from TMB40 and 21 from TMD60).
Given Strategy D’s high cost and its inability to con-
verge those TMD60 systems where A-C failed, we did
not use it for TMB40 and MOR17 systems. All results
in Tab. II include D3(BJ) corrections, with D3(BJ)-free
comparisons in Tab. S-I in the SI.

From Tab. II, we can see that DM21 has the po-
tential for more accurately describing TMC than
B3LYP. For example, we can see that DM21@B3LYP
is on average noticeably more accurate than self-
consistent B3LYP@B3LYP. While self-consistent
DM21@DM21 shows a slight decrease in accuracy
compared to DM21@B3LYP, it remains more accurate
than B3LYP@B3LYP. In DM21 converged instances,
B3LYP@DM21 shows slightly lower but still comparable
accuracy to DM21@B3LYP.

The MAEs in Tab. II suggest DM21’s potential to out-
perform B3LYP for TMC both in terms of approximate
functional and energetic consequences due to approxi-
mate densities. However, a large number of the DM21
unconverged cases in the same table cannot be over-
looked. This issue makes DM21 of nearly no use in TMC,

as even when DM21 SCF solution is achievable, finding
such solution for TMC would require far more human
effort and intervention than for e.g., B3LYP.

Figures 4-6 focus on the performance of the 4 func-
tional/density combinations for the individual reactions
of the MOR17, TMB40, and TMD60 sets. Figs. 4 and 5
also contain examples of the most difficult reactions in
their sets.

Fig. 4 shows the errors for the MOR17 set, for which we
could converge all systems within DM21. We can see that
the evaluation of a given functional on the other’s density
(A@B) is somewhat more accurate than self-consistent
calculations (A@A), which is likely due to the error can-
cellations between functional errors of A and density-
driven errors of B.37–39. More importantly, we can see
that the DM21 functional, whether paired with its own
density or that of B3LYP, provides better accuracy for
MOR17 than the B3LYP functional. .

In Fig. 5, we show the errors for the TMB set, split
by the reactions where we could converge the DM21 re-
sults [panel(a)], and those where we could not [panel(b)].
From Fig. 5(a), we can see that A@A and A@B curves
align for small errors, suggesting that a functional choice
determines accuracy. With larger errors, A@A and A@B
pairs are less aligned, indicating density’s increasing rel-
evance for the energies. Overall, the MAEs of the four
DM21/B3LYP methods are smaller than that for MOR17
and lie in a narrow range (1.4 - 1.8 kcal/mol).

We can see from Fig. 5(b) that for the TMB cases,
when DM21 does not converge, DM21@B3LYP is much
more accurate than B3LYP@B3LYP. This intriguing
improvement of DM21@B3LYP over B3LYP@B3LYP
aligns with similar improvements observed for main-
group barriers8. On the other hand, this improvement
in panel(b) (for TMB40 barriers that did not converge
with DM21) is much larger than in panel (a) (cases
that converge). This discrepancy suggests a potential
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Examples of reactions from (b) panel with large errors.

trend for TM barriers where DM21 fails to converge, which may be attributed to the error cancellation be-
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tween DM21’s functional error and B3LYP’s density-
driven errors. However, due to the limited number of
such cases, this observation remains speculative.

Fig. 6 focuses on the individual errors for the TMD60
dataset. For cases when DM21 converges [panel(a)], the
errors are large and comparable in magnitude across the
four methods. In panel(b) with the cases for which DM21
does not converge, DM21@B3LYP performs poorer than
B3LYP@B3LYP, which is an opposite trend from Fig. 5.
Nevertheless, recalling Tab. II, DM21@B3LYP performs
better on average than B3LYP@B3LYP for TMC117.
However, considering the current cost of DM21 (Sec-
tion II), even a single SCF cycle with DM21 needed for
DM21@B3LYP would far exceed the cost of the entire
B3LYP@B3LYP calculation.

In summary, we see that DM21 is very effective when
it converges, and where it uses already converged B3LYP
densities and orbitals. Before concluding, we will at-
tempt to understand why DM21 fails in some cases by
examining some of its features, and compare how they
differ between cases that converge seamlessly, and those
that do not.

IV. DFT FEATURES ANALYSIS

To gain insight into DM21’s performance in main-
group versus TMC, in this section we will compare the
DM21 features of small molecules. All features in stan-
dard hybrid DFAs and the local-hybrid form of DM21 are
represented as functions, fa(r⃗), that are defined at some
point r⃗ of interest. Then,

Exc =

∫
exc(f1(r⃗), . . . fn(r⃗))dr⃗ , (1)

where n is the number of features, f1≤a≤n(r⃗), used to de-
fine the local xc energy density, exc. For B3LYP there are
five ingredients, of which only four are used non-trivially
and all are employed analytically – it is thus easy to
understand how B3LYP (mis-)behaves. In contrast, un-
derstanding how DM21 varies with its n = 12 ingredients
(i.e. dimensions) is a virtually impossible task.

We can, however, get some insights into the kinds of
features that DM21 has learned, and those it needs to
deal with in systems where it wasn’t trained on. Com-
binations of features that do not appear in the training
data are the most likely source of errors in failure cases.
For this task, we represent the features of a system using
two-dimensional projection heat maps,

M(Fa, Fb) ∝
∫

δ(fa(r⃗)− Fa)δ(fb(r⃗)− Fb)ρ(r⃗)
4/3dr⃗ ,

(2)

where fa and fb are the target features (e.g. r4s |∇ρ|) at
a given point in space. Data is weighted by the LDA ex-
change energy density (∝ ρ4/3) so that the heat map
approximates the relative importance of different val-
ues of f1 and f2 to the xc energy. Put another way,

it represents the likelihood that errors in the DFA at
those values will contribute substantially to errors in the
xc energy for the system. We focus on features from
DM21: the density gradient, |∇ρ(r⃗)|, kinetic energy den-
sity, τ(r⃗) = 1

2

∑
i |∇ϕi(r⃗)|2, exchange energy density,

eHF
x (r⃗) =

1

2

∑
ij

ϕi(r⃗)ϕj(r⃗)

∫
ϕi(r⃗)ϕj(r⃗)

dr⃗dr⃗′

|r⃗ − r⃗′|
(3)

and its range-separated counterpart, eωHF
x (r⃗), with 1

R →
erfc(0.4R)

R . We make features unitless by multiplying by

powers of the Wigner-Seitz radius, rs = 0.62035ρ−1/3.
Fig. 7 shows projection heat maps for six combinations

of features for molecular CO, CaO and CrO, all in their
lowest energy spin configuration. The features for CO
and CaO differ, but in both cases the features are tightly
confined to the vicinity of lines. By contrast, CrO has a
wider ‘spread’ in feature space, especially as a function
of Hartree-Fock exchange energy densities. This means
that CrO is more susceptible to errors in the DFA across
a wider region of feature space, meaning that a lack of
training data in relevant parts of feature space is likely
to lead to errors in the DM21 model.
By focusing on atoms, Fig. 8 reveals that the difficul-

ties in CrO are very likely a feature of Cr more than the
bond. Indeed, the Cr atom samples a greater spread in
feature space than any of the other atoms shown. Given
the lack of potential training data even from other transi-
tion metals, it is not surprising that DM21 did not learn
how to model Cr bonds from its organic training set.
What is remarkable is that atomic Cr converges at all,
unlike atomic V and Fe that have similar (but less spread)
features.

V. CONCLUSIONS AND OUTLOOK

In conclusion, we have shown that the DM21 func-
tional’s performance in transition metal chemistry, de-
spite being comparable in accuracy to B3LYP, faces chal-
lenges in SCF convergence that makes it of little to
no practical use in this domain. Despite these limita-
tions, we also showed that evaluating DM21 function-
als on B3LYP densities results in improved performance
over self-consistent B3LYP for TMC117 reactions. To
shed light on the SCF convergence issues of DM21 with
transition metal molecules, we have analyzed the DM21
features, highlighting the distinctions between transition
metal atoms/oxides and their main-group counterparts.
The improved accuracy of DM21@B3LYP over

B3LYP@B3LYP demonstrates the significant potential of
machine-learned density functionals in transition metal
chemistry. Despite its potential, energy refinement
on B3LYP densities with DM21 is currently not cost-
effective, as a single SCF iteration of DM21 in PySCF
for medium-sized molecules can exceed by far the total
time required for a B3LYP or even B2PLYP calculation.
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FIG. 6: (a) Errors of the four method combinations for TMD60 dataset for a subset of bond energies for which
DM21 converges. def2-QZVP basis set was used and the D3(BJ) correction has been added to all results. (b) same

as (a) but for bond energies for which DM21 did not converge.

FIG. 7: Projection heat maps for different pairs (columns) of unitless features for CO, CaO and CrO (rows). Darker
reds indicate more heavily sampled features. White regions indicate a complete absence of features. Dotting

indicates incomplete sampling of regions caused by the discrete grid. The bottom and right axes show the features
and axes are on a logarithmic scale. We exclude points where rs < 1 (ρ > 0.24) to remove the nuclear regions from

the plots. Data obtained using B3LYP/def2-qzvp.

Carrying out DM21 with B3LYP orbitals seems to of-
fer a useful compromise once DM21 is coupled with a
more efficient implementation of the exact exchange en-
ergy density40.

Moving DFAs beyond the ”no man’s land” by creat-
ing machine-learned functionals with a broad applicabil-
ity to both main-group and transition metal chemistry
remains an open challenge. On the one hand, incorpo-
rating features designed to capture strong correlation ef-
fects into machine-learning DFAs may improve the trans-
ferability to transition metal chemistry38,41,42. On the

other hand, addressing this by incorporating transition
metal reactions into machine-learning density function-
als comes with its own obstacles:

1. The scarcity of accurate benchmark data for tran-
sition metal chemistry is a well-known issue de-
spite recent improvements43,44. For example,
the TMC151 database has about ten/thirty times
fewer reactions than the GMTKN55/MGCDB84
databases for main-group chemistry.45,46 Moreover,
within the TMC151 subsets, only TMD60 uses a
higher level of theory than CCSD(T), which is
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FIG. 8: Like Fig. 7 but for atoms (columns) and with fewer features pairs (rows). Note, of these atoms V and Fe did
not converge (DNC) using any strategy.

a single-reference method. To address this data
scarcity, one can either utilize existing9 or design
new data-efficient strategies for machine-learning
DFAs.

2. Näıvely including transition metal reactions in
machine-learning DFAs may compromise the ac-
curacy for main-group chemistry14. However, this
can be addressed by employing datasets that are
explicitly biased towards ensuring higher transfer-
ability to both main-group and transition metal
chemistry14.
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Appendix A: Strategy D

Strategy D involves a direct orbital minimization al-
gorithm for the orbital-dependent energy, E[{ϕi}], with
respect to variations in orbitals within a restricted open-
shell theory; with the aim to find (local) minima that are
unstable or difficult to find using typical self-consistent

field convergence strategies. It involves iteratively solv-
ing the approximate-Newton equation, C → C exp(A),
where C is the matrix describing the orbital coefficients;
and A is an anti-symmetric matrix with elements,

Aij =
∆ij

∆2
ij + η2

[
⟨ δE
δϕi

|ϕj⟩ − ⟨ϕi| δEδϕj
⟩
]
, (A1)

where, ∆ij = 2|fi−fj ||ϵi−ϵj | is a diagonal approximation
for the Hessian and η = 0.01 is a regularization factor (us-
ing occupation factors, fi, and orbital energies, ϵi). For
DM21, we can apply the chain-rule to spin-density ingre-
dients to obtain, | δEδϕj

⟩ :=
(
fj↑F̂DM21,↑ + fj↓F̂DM21,↓

)
|ϕj⟩

where fiσ indicates whether or not orbital i is occupied
with spin σ in the density; and F̂DM21,σ is the effective
Fock operator for spin σ. The optimal solution occurs
when ∥A∥ → 0 is accompanied by a decrease in energy,
indicating that the solution has converged to a minimum.

In fact, Strategy D goes one step further than the
direct iteration described above, which helps it to con-
verge difficult cases. After 50 iterations, we set C →
C exp(α∗A) using an optimal |α∗| < 3. The optimal
value, α∗, is determined by quadratically fitting results
for α ∈ {0, 1, 2} to find the minimum along the line. This
modification helps to avoid rapid variations in energies
when outside the radius of convergence for the global
minimum and also helps difficult cases iterate to their
minimum. Typical calculations (which begin within the
radius of convergence) find the minimum within about
30 iterations, so never require this treatment.

The code is available on request.

https://doi.org/10.26434/chemrxiv-2024-6bxhz ORCID: https://orcid.org/0000-0002-0768-9176 Content not peer-reviewed by ChemRxiv. License: CC BY 4.0

https://doi.org/10.26434/chemrxiv-2024-6bxhz
https://orcid.org/0000-0002-0768-9176
https://creativecommons.org/licenses/by/4.0/


10

Appendix B: Further computational details

For B3LYP calculations, the convergence threshold is
set to 10−8, while gradients convergence threshold is set
to 10−4. In DM21 SCF, they are set to 10−6 and 10−3, re-
spectively. For DM21 calculations, the orbitals obtained
from B3LYP SCF are used as the initial guess. The maxi-
mum number of SCF iterations that we use for Strategy
A, B and C are set to 200, 500, 900 respectively.
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I. RESULTS ON TMC117 WITHOUT D3(BJ)
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FIG. S1: Beswarm plots same as Fig.1, but without D3(BJ) correction.
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dataset
TMB TMD MOR

whole sub whole sub whole

B3LYP@B3LYP 2.83 2.73 6.34 6.78 9.36

DM21@B3LYP 2.50 2.93 6.67 6.24 8.08

DM21@DM21 - 3.13 - 6.30 8.41

B3LYP@DM21 - 2.66 - 7.11 9.04

Number of Reactions 40 27 60 39 17

TABLE S-I: Same as Tab.II, but without D3(BJ) correction.
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FIG. S2: Same as Fig.4(a), but without D3(BJ) correction.
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FIG. S3: Reactions contained in MOR17 dataset. The indices correspond to their rankings

sorted by the average of D3(BJ) corrected absolute errors from all four methods from small

to large, as in Fig. 4(a).
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FIG. S4: (a) Same as Fig.5(a), but without D3(BJ) correction. (b) Same as Fig.5(b), but

without D3(BJ) correction.
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FIG. S5: Reactions contained in TMB40 dataset for which DM21 does not converge. The

indices correspond to their rankings sorted by the average of D3(BJ) corrected absolute

errors from all four methods from small to large, as in Fig. 5b.
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FIG. S6: Reactions contained in TMB40 dataset for which DM21 converges (continued

next page).
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FIG. S7: Reactions contained in TMB40 dataset for which DM21 converges. The indices

correspond to their rankings sorted by the average of D3(BJ) corrected absolute errors

from all four methods from small to large, as in Fig. 5a.
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FIG. S8: (a) Same as Tab.6(a), but without D3(BJ) correction. (b) Same as Tab.6(b), but

without D3(BJ) correction.
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II. CONVERGENCE STATISTICS OF DIFFERENCT STRATEGY

dataset
Atoms Molecules

conv A B C conv A B C

TMD 14 14 0 0 45 43 2 0

W4-11 12 12 0 0 140 140 0 0

TABLE S-II: DM21 convergence using different strategies
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