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Machine learning (ML) plays a pivotal role in extending the reach of quantum chemistry methods for both6

molecules and materials. However, leveraging ML to improve upon human-designed density functional ap-7

proximations (DFAs), the primary workhorse for quantum simulations, remains challenging due to severely8

limited transferability to unseen chemical systems. Here we address this challenge through real-space ML,9

where energies are learned point by point via correlation energy densities per particle obtained from regular-10

ized perturbation theory. We pursue two crucial strategies that enable the construction of highly transferable11

DFAs, grounded in the Møller–Plesset adiabatic connection framework, for correlation energies defined with12

respect to the Hartree–Fock reference. First, we introduce the Local Energy Loss, whose data efficiency (ex-13

panding each system’s single energy into thousands of datapoints) dramatically enhances transferability when14

combined with a physically informed ML construction. Second, we construct a real-space, machine-learned,15

and regularized extension of Spin-Component-Scaled second-order Møller–Plesset perturbation theory, open-16

ing new avenues for developing transferable DFAs particularly suited for overcoming self-interaction errors17

common to traditional DFAs.18

INTRODUCTION19

Machine learning (ML) is driving a paradigm shift20

across scientific disciplines, including quantum chem-21

istry (QC), where it reshapes the landscape of used22

methods1–6. The recent surge in ML has further in-23

creased the importance of density functional approxima-24

tions (DFAs), already a cornerstone of quantum simu-25

lations in materials science and chemistry (see the re-26

cent review by von Lilienfeld and co-workers7). On one27

hand, DFAs generate vast amounts of data to train ML28

models7–15, greatly extending their reach in time and29

length scales16–25. On the other hand, ML techniques30

provide improved DFAs26–38 (DFAs), with the DM2131

functional by DeepMind39 being a prominent example.32

A remaining critical problem with ML in QC is their33

limited transferability—the ability to generalize to un-34

seen data40–43. These limitations hinder the applicabil-35

ity of ML models in QC, making users cautious and of-36

ten leading them to stick with well-established old-school37

methods44 over new-school ML counterparts. This sit-38

uation has lead to a no man’s land between old-school39

and new-school DFAs45: the promised revolution of ML-40

based DFAs is hampered by the far broader applicabil-41

ity of old-school DFAs45, such as B3LYP46–49 or PBE50.42

For example, while DM21’s training on systems with frac-43

tional charges and spin addresses some limitations of old-44

school functionals39, its catastrophic transferability fail-45

ures have recently become evident45. Namely, it has been46

shown that DM21 does not converge for certain transition47

metal (TM) atoms—a convergence task easily handled by48

reputable old-school functionals45. Thus, it is no wonder49

that organic chemists still prefer old-school DFAs over50

DM21 or other new-school models for TM-catalyzed re-51
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action mechanisms51, despite major TM shortcomings of52

the former52,53.53

To move from this no man’s land and leverage the54

power of ML for DFAs design, we need to solve the un-55

derlying transferability problem. Helping strategies are56

the use of physical constraints54–57 (a mix of old- and57

new-school methods), more diverse data in the training58

set41, or the engineering of new features58. Yet, an angle59

in ML of DFAs that requires more attention is the train-60

ing data efficiency, particularly since feeding more data61

to ML models can become a never-ending game due to62

the data hunger in ML models and the vastness of chem-63

ical space2,3,5. The purpose of this work is to critically64

examine data efficiency in training DFAs and maximize65

it in order to embed transferability in ML of DFAs.66

The primary goal when training DFAs is to learn how a67

given electronic density translates into energy. However,68

ML practices in QC currently treat energies as not very69

informative, following a 1 system = 1 energy data point70

approach (see Refs. 30–32, 34, 37, 39, 55, 59, and 60).71

For example, when learning force fields, forces (energy72

gradients) are much more informative than energies19,61.73

Similarly, recent works have shown that in current ML74

DFA practices, electronic densities are also far more in-75

formative than energies31,34,55,59,60 (each grid point is a76

density datapoint). While using electronic densities ef-77

fectively enhances the transferability of ML-based DFAs,78

applying a point-by-point learning strategy to energies79

(typically the primary target of simulations) offers a dis-80

tinct direction for improving ML-based DFAs. Identify-81

ing transferability as the key issue in ML DFAs, here we82

establish a framework for making energy training more83

data-efficient and address the challenges that must be84

overcome to leverage this data efficiency to embed trans-85

ferability into ML DFAs.86

In view of our objective to enhance data efficiency for87

energies in ML-based DFAs, we introduce real-space en-88

ergy learning and apply it to machine-learn a DFA for89
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Fig. 1: Real-space machine learning correlation energy densities (a): Overview of methods used here and their connections.
(b): Neural network illustrations with real-space features defined in Sec. S6 (reduced density gradient s, reduced density Laplacian q,
regularized energy kinetic variable α and temperature-dependent fractional occupation number weighted densities62,63 f1 and f2), and
LES/GES strategies used to create DFAs in this work. (c,top): Correlation energy density per particle of the Mg atom for GES-learned
and LES-learned ML2, and κMP2 as a proxy reference. (c,bottom): Corresponding dissociation curve of the BH diatomic system.
(d,top): Correlation energy density per particle of the Helium dimer at interatomic distance of 5.6 Bohr plotted along the principal
axis of the system for different κ-regularization values. (d,bottom): Spin-resolved interaction correlation energy density of the Helium
dimer (dimer energy density minus that of atoms). (e,top): Errors in interaction energies (kcal mol−1) along the dissociation of the
formic acid dimer (geometries and reference values are taken from the S22x5 database64) for HF, MP2, κMP2 and MLS2. (e,bottom):
Relative absolute correlation energy errors in log-scale of available systems from the W4-11 test dataset65 (see Sec. S12 in the SI for a
detailed list of test data points) for MP2, κMP2 and MLS2.

correlation energy (a crucial target for DFAs). This ap-90

proach expands each system’s single energy data point91

into thousands of energy data points for the training.92

During the learning of our DFAs, each point in space93

contributes to the loss function, which we call Local En-94

ergy Loss (LES). Crucially, LES penalizes error cancella-95

tions between energy contributions from different regions96

in space, thereby enhancing transferability. With LES,97

every system in the training set becomes an entire en-98

ergy dataset, and we show here that a careful, physically-99

informed application of LES is essential to fully realize100

its data-efficiency potential and embed transferability in101

ML of DFAs.102

Applying LES for ML of correlation DFAs requires two103

crucial ingredients: (i) a well-defined correlation energy104

contributions at each point in space ec(r) (i.e., correla-105

tion energy density per particle, see Eq. 1 below) and (ii)106

a robust strategy for generating accurate ec(r) training107
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data. To meet these requirements simultaneously, we108

develop here LES-based ML DFAs for correlation ener-109

gies defined with respect to the Hartree–Fock (HF) refer-110

ence. While historically DFA development has been tied111

to Kohn-Sham density functional theory (KS DFT)66,112

recent theoretical advances based on the Møller–Plesset113

adiabatic connection (MPAC) formally ground the devel-114

opments of correlation DFAs evaluated on HF densities115

(see Ref. 67). Constructing DFAs on fixed (HF) densities116

within the MPAC framework enables us to isolate and fo-117

cus specifically on real-space energy learning strategies,118

complementing (see Discussion) existing real-space den-119

sity learning approaches31,34,55,59,60. As this work em-120

ploys local energy quantities, we note that these quanti-121

ties provide valuable chemical insights when well-defined122

(see, e.g., Refs. 68–70). Since ec(r) is not uniquely de-123

fined, here we adopt a physically transparent definition124

arising from the MPAC framework67 and demonstrate its125

advantages for LES.126

An overview of the key methods presented in this pa-127

per is given in Fig. 1. To demonstrate the power of the128

LES-based approach, and more generally real-space ML129

for DFAs, we first construct a robust proxy reference for130

ec(r) that preserves the original MPAC-based definition131

and efficiently implement it to enable direct training of132

our ML models for ec(r). This proxy reference ec(r) is133

built by combining second-order perturbation theory67
134

(PT2) [magenta circle in Fig. 1(a)] and the specific PT2135

regularization71,72 [blue square in Fig. 1(a)], which is136

crucial for making our proxy reference sufficiently accu-137

rate. The effect of regularization on the PT2’s ec(r) for138

the helium dimer (going from the magenta circle to the139

blue square in Fig. 1(a)) is displayed in Fig. 1(d,top).140

We implement a numerical data generator of this proxy141

reference ec(r) by leveraging modern Python libraries142

(e.g., JAX73). New input features tailored to the prob-143

lem, such as Grimme’s real-space electronic correlation144

measures62,63, enable us to construct a robust neural145

network (NN) for ec(r) [Fig. 1(b)]. We then contrast146

the transferability of our LES strategy with the common147

global energy loss (GES) that adopts standard 1 system148

= 1 energy data point approach [cyan and maroon dia-149

monds in Fig. 1(a)]. Keeping other factors in the DFA150

training the same allows us to isolate how the trans-151

ferability is affected when we move from GES to LES152

[Fig. 1(c) shows how well the two models trained on small153

atoms transfer to the dissociation curve of BH within154

spin-restricted calculations]. Similar transferability tests155

reveal subtle yet crucial requirements for successful and156

robust LES applications: it should be defined in terms of157

ec(r) rather than alternative quantities (e.g., its density-158

weighted counterpart), and coupled with a physically-159

informed ML model trained on a physically-informed160

ec(r) definition. We also derive the contributions at each161

point in space for different spin channel pairs of our proxy162

ec(r) [purple and orange circles or squares in Fig. 1(a)]163

and we show these spin-resolved interaction components164

for the helium dimer in Fig. 1(d,bottom). We then165

use spin-resolved energy densities per particle to build166

a real-space, machine-learned and regularized extension167

of spin-component-scaled74,75 (SCS) PT2 correlation en-168

ergy (the performance of this ML strategy for the formic169

acid dimer is shown in Fig. 1(e,top)). The resulting170

model [green diamond in Fig. 1(a)] opens up avenues171

for DFAs construction and enables us to bridge the gap172

between our proxy reference correlation energies (regu-173

larized PT2) and their exact counterpart.174

RESULTS175

Local and global energy loss (LES vs GES)176

Distinguishing between LES and GES is a crucial point177

of this work when training ML DFAs. To define LES and178

GES generally, consider the reference (i.e. exact) energy179

Eref =

∫
eref(r)ρ(r)dr (1)

with a corresponding reference energy density58 per par-180

ticle, eref(r), and electronic density ρ(r). An ML energy181

quantity defined in the same way is indicated using the182

ML superscript. Then, GES reads183

LGES ∼
∣∣Eref − EML∣∣ . (2)

In contrast, with LES, we consider the pointwise differ-184

ence of the reference and ML energy densities per particle185

weighted by the density:186

LLES ∼
∫ ∣∣∣∣eref(r)− eML(r)

∣∣∣∣ρ(r) dr. (3)

Minimizing LES, strictly defined in terms of the energy187

density per particle, instead of GES turns each point in188

space into an energy data point, and as we shall see, mov-189

ing from GES to LES dramatically enhances the transfer-190

ability of the underlying ML DFA even with very small191

training sets.192

Improving and deriving PT2 correlation energy densities per193

particle194

To demonstrate the difference between LES and195

GES, we will target correlation energy approximations.196

While correlation DFAs are typically developed within197

the KS DFT framework, recent work has shown that the198

Møller–Plesset adiabatic connection (MPAC) formally199

grounds the construction of DFAs mapping Hartree–Fock200

(HF) densities directly to correlation energies (defined201

here w.r.t. the HF energies). As detailed in Ref. 67,202

this ground distinguishes the MPAC-based correlation203

DFAs from density-corrected DFT, where HF densities204

are introduced heuristically to improve DFAs developed205

within KS DFT76–78. Leveraging this MPAC formalism206
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and its recently introduced correlation energy densities67,207

we construct DFAs as NN-based functionals of HF den-208

sities, enabling practical use of HF orbitals to compute209

all energy terms and input features for our NNs.210

To briefly introduce our energy density per particle211

targets for LES, we define correlation energy as,212

Ec = Eref−⟨Φ|Ĥ|Φ⟩ =
∫

ec(r)ρ(r)dr =

∫
ēc(r)dr, (4)

where Eref is the exact ground-state energy, Ĥ is the213

corresponding exact Hamiltonian, and Φ is the HF wave-214

function (a single Slater determinant minimizer of Ĥ,215

that yields ρHF(r) = ρ(r)). In Eq. 4, we distinguish the216

correlation energy density, ēc(r) = ec(r)ρ(r), from the217

correlation energy per particle, ec(r), as this distinction218

is crucial for our subsequent LES analysis. As ec(r)219

is not uniquely defined, we adopt here a specific defi-220

nition (i.e., gauge) for ec(r), derived in Ref. 67 from the221

MPAC theory. This gauge is designed as an MPAC-based222

analogue67 of the conventional DFT gauge for correlation223

energies, i.e., the electrostatic potential of the correlation224

hole79–82, known for transparent physical interpretation225

and advantages in DFA construction82,83. Since comput-226

ing the exact ec(r) is costly67, we approximate it using its227

weakly interacting limit determined by MP2, preserving228

the original MPAC gauge,229

eMP2
c (r) =

1

4ρ(r)

∫
PMP2
2 (r, r′)

|r− r′|
dr′, (5)

where PMP2
2 (r, r′) is the first-order MPAC correction to230

the pair density that yields the MP2 correlation energy231

(for its formal definition and derivation of Eq. 5, see232

Sec. S1 in the SI). Crucially, PMP2
2 (r, r′) isolates the cor-233

relation contribution to the pair density and is analogous234

to the DFT correlation hole67.235

Expressing Eq. 5 in terms of HF orbitals yields,236

eMP2
c (r) =

1

ρ(r)

[∑
ijab

Vijab(r)

(
1

2
Tijba − Tijab

)

+
∑
ijab

Vijba(r)

(
1

2
Tijab − Tijba

)]
, (6)

where i, j are occupied, and a, b are virtual KS orbital237

(ϕ(r)) indices. Tijab are the partial MP2 doubles ampli-238

tude,239

Tijab =
⟨ij|ab⟩

εa + εb − εi − εj
, (7)

where ε are orbital energies, and Vijab(r) is the orbital240

potential,241

Vijab(r) = ϕi(r)ϕa(r)

∫
ϕj(r

′)ϕb(r
′)

|r− r′|
dr′. (8)

As eMP2
c (r) by Eq. 4 integrates to the MP2 correlation242

energy, it can be easily argued that it is not a sufficiently243

good proxy reference for LES-based applications given244

general MP2 limitations71,72,84, particularly for small245

orbital-gap systems85 (see the MP2 dissociation curve246

relevant to this work in Fig. S1 in the SI). To address this,247

we apply Head-Gordon’s κ-regulizaration71,72 (κ ≥ 0) to248

eMP2
c (r) of Eq. 5 by regularizing its partial MP2 doubles249

amplitudes,250

Tκ
ijab = Tijab

(
1− e−κ(εa+εb−εi−εj)

)2

. (9)

The regularized eκMP2
c (r) is obtained from Eq. 6 by the251

replacement Tijab → Tκ
ijab, which also regularizes the un-252

derlying pair density (see Sec. S1 in the SI):253

eκMP2
c (r) =

1

4ρ(r)

∫
PκMP2
2 (r, r′)

|r− r′|
dr′. (10)

254

When κ = 0, eκMP2
c (r) = 0, and when κ → ∞,255

eκMP2
c (r) = eMP2

c (r). In Fig. 1(d,top), we observe how256

eκMP2
c (r) evolves to eMP2

c (r) for the helium dimer as κ257

increases. Using the regularized eκMP2
c (r) [blue square in258

Fig. 1(a)] instead of eMP2
c (r) [magenta circle in Fig. 1(a)]259

as the proxy reference for LES-based learning is crucial,260

as the former significantly improves dissociation curves of261

diatomic systems, which are central to our LES vs. GES262

comparison. In these curves, κ-regularization removes263

the MP2 divergence at large bond lengths arising from264

small orbital energy gaps. Here we set κ = 2.0 to gen-265

erate eκMP2
c (r) proxy reference, as it better balances im-266

provements over MP2 for stretched bonds while main-267

taining accuracy near equilibrium, compared to the orig-268

inally proposed κ = 1.471 (see Fig. S1 in the SI for a269

clarifying example of N2 dissociation).270

After regularization, we perform the spin-resolution of271

eκMP2
c (r) into same-spin (ss) and opposite-spin (os) com-272

ponents: eκMP2
c (r) = eκMP2

c,ss (r) + eκMP2
c,os (r), enabling a273

spin-resolved real-space analysis of electron correlation274

[purple and orange in Fig. 1(a)]. The more compact of275

the two, eκMP2
c,os (r), we derive from Eq. 6 by considering276

only os electronic pairs:277

eκMP2
c,os (r) = − 1

2ρ(r)

∑
ijab

[
Tκ
ijabVijab(r) + Tκ

ijabVijba(r)

]
.

Later in Sec., we will use ML for real-space scaling of278

eκMP2
c,os (r) and eκMP2

c,ss (r) separately to build a correction279

from κMP2 to the true Ec.280

Central to our data generator for real-space ML of ec(r)281

are the κ-regularization and spin resolution of MP2 cor-282

relation energy densities, both efficiently implemented by283

combining density fitting86,87 with the power of JAX73
284

and modern tensor libraries88 for optimizing tensor con-285

tractions required to obtain eκMP2
c (r). Further imple-286

mentation details are provided in Methods and Sec. S3287

of the SI.288
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(a) (b)

(c) (d)

Fig. 2: Visualization of ∆ēc(r) (total correlation energy density minus the one from the individual subsystems). (a):
MP2 plot along the inter-nuclear axis of the Helium dimer (position of the nuclei are denoted by the spheres) at an interatomic distance
of 5.6 Bohr. Inset shows the corresponding ∆PMP2

2 (r, r′) at r =z0 on the same axis. (b): MP2 volume slice plots for the benzene–CH4

complex85 along planes perpendicular and parallel to the benzene ring, highlighting binding and non-binding regions. (c): Isosurface
visualization of MP2 and κMP2 (κ = 1.4) for the same complex at binding isovalue (−2.5e-5 (a.u.)). (d): same as (c), but for the ss part.

Regularized PT2 correlation energy densities for interaction289

energies290

Now we move to a real-space analysis of the interac-291

tion correlation energy density, ∆ēc(r), defined as the292

total system’s ēc(r) minus the sum of the ēc(r) of the293

isolated subsystems (e.g., dimer minus monomers). A294

subtle point here is that while for ML purposes ec(r) is295

vastly superior to ēc(r) (see below), spatial visualization296

of interactions requires ∆ēc(r) instead of ∆ec(r), as the297

former directly integrates to ∆Ec, while the latter lacks298

a clear density factor to do so.299

From Eq. 10, ∆ēMP2
c (r) is given by the electrostatic300

potential of ∆PκMP2
2 (r, r′),301

∆ēκMP2
c (r) =

1

4

∫
∆PκMP2

2 (r, r′)

|r− r′|
dr′, (11)

where ∆PκMP2
2 (r, r′) is the interaction component of302

PκMP2
2 (r, r′). As PκMP2

2 (r, r′) isolates the correlation303

part of the underlying pair density, ∆PκMP2
2 (r, r′) fur-304

ther isolates how this quantity is deformed by the inter-305

action between fragments, making this quantity crucial306

for describing the physics of weak interactions, particu-307

larly dispersion effects (see, e.g., Refs. 89–91).308

While Eq. 11 represents just one possible gauge309

for ∆ēκMP2
c (r), we emphasize that it encodes the310
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physics of weak interactions through its direct link311

to ∆PκMP2
2 (r, r′), a fundamental quantity for describ-312

ing the physics of weak interactions, such as disper-313

sion effects89–91). To illustrate this for dispersion, we314

first consider a simple example: the helium dimer, for315

which spin-resolved interaction correlation energy densi-316

ties ∆ēMP2
c (r) are shown in Fig. 1(d,bottom) along the317

internuclear axis. We now show their sum in Fig. 2(a),318

highlighting distinct binding (negative) and non-binding319

contributions for stretched He2. To illustrate the inter-320

action physics encoded in ∆ēMP2
c (r), we fix the reference321

electron at one of the nuclei (z0) in He2, and in the inset322

of Fig. 2(a) we show ∆PMP2
2 (z0, z

′) along the internu-323

clear axis as a function of the second electron position324

z′. The plot reveals spatially nonlocal polarization in325

∆PMP2
2 , characteristic of dispersion: when z′ is near the326

second helium nucleus, ∆PMP2
2 (z0, z

′) exhibits a negative327

accumulation closer to z0 and a corresponding positive re-328

gion further away. As the negative part of ∆PMP2
2 (z0, z

′)329

lies closer to z0 than the positive part, the resulting elec-330

trostatic potential, i.e., ∆ēc(z0), is negative. If the po-331

larization pattern is reversed, i.e., the positive part of332

∆PMP2
2 (z0, z

′) lies closer to z0 than the negative part, as333

when z0 is in the outer region, then ∆ēc(z0) becomes pos-334

itive (see Fig. S3 for additional plots in the SI). Still, the335

negative (i.e., binding) regions dominate, and MP2 cor-336

relation yields net binding in He2 (Table S1 in the SI). In337

this way, Eq. 11 condenses information from ∆P2(r, r
′), a338

key two-body quantity encoding interaction physics, into339

∆ēc(r), a one-body correlation quantity for interaction340

energies. Thus, even though it is not unique, the specific341

gauge defined by Eq. 11 yields a physically interpretable342

local correlation energy quantity for describing weak in-343

teractions between fragments.344

Having established the direct connection between345

∆ēMP2
c (r) and dispersion physics, we now analyze346

∆ēMP2
c (r) for the benzene–methane complex in the re-347

maining panels of Fig. 2. In Fig. 2b, volume slices along348

planes perpendicular and parallel to the benzene ring dis-349

tinguish regions between the fragments (typically bind-350

ing regions) from those outside (typically non-binding).351

MP2 overbinds this complex, whereas κMP2 reduces this352

overbinding (Table S2 in the SI). This reduction is visu-353

ally reflected in Fig. 2c, which compares MP2 and κMP2354

∆ēc(r) isosurfaces for the binding region, with the κMP2355

isosurface confined within the MP2 counterpart. The356

spatial confinement is even more pronounced when fo-357

cusing on just the ss component of ∆ēκMP2
c (r) [the elec-358

trostatic potential of the ss component of the underlying359

∆PκMP2
2 (r, r′)], as shown in Fig. 2d.360

ML2 model via machine-learning of regularized eκMP2
c (r)361

We will now present the ML2 model, a machine-learned362

correlation energy density based on the regularized MP2363

proxy reference, which we obtain by mapping a set of364

pointwise features using neural networks (NNs) [going365

from the blue square to the cyan or maroon diamonds366

in Fig. 1(a)]. This mapping is illustrated in Fig. 1(b).367

In addition to the established features used in ML of368

DFAs31,57—the reduced density gradient s(r), the re-369

duced density Laplacian q(r), and the regularized kinetic370

energy variable α(r) from the r2SCAN DFA92—we intro-371

duce Grimme’s electronic temperature-dependent frac-372

tional occupation number weighted density62,63 (FOD)373

as the crucial feature (a detailed list of features is given in374

Sec. S6 in the SI). FOD differentiates strongly correlated375

and weakly correlated regions in molecules. While both376

eκMP2
c (r) and FOD provide insights into electronic corre-377

lation through the interaction between occupied and un-378

occupied orbitals, FOD is computationally much cheaper,379

making it an excellent feature for ML of the correlation380

energy density.381

Even though ρ(r)-based features (e.g., the382

Wigner–Seitz radius) might seem like a natural choice,383

we intentionally omit them from the ML2 feautes. This384

is because we found that eMP2
c (r) and its κ-counterpart385

are scaling invariant for a uniformly scaled93 density386

ρλ(r) = λ3ρ(λr),387

eκMP2
c [ρλ](r) = eκMP2

c [ρ](r). (12)

A detailed derivation is given in Sec. S7 in the SI. Fol-388

lowing this scaling invariance, we construct eML2
c (r), the389

ML2 analog of eκMP2
c (r), as390

eML2
c (r) = wc(r) ex(r) ρ

−1/3(r), (13)

where ex(r) is the exchange energy (we use the same391

Python code to implement both eMP2
c (r) and ex(r) on392

the same footing), and wc(r) are the ML2 weights ob-393

tained from the NN (see Fig. 1(b) for the illustration394

and Methods for NN architecture details). With the use395

of HF-based ingredients, the computational cost of ML2396

is comparable to that of an HF calculation and cannot397

be lower. As we shall see later, embedding the physics398

into LES-based ML2 through Eq. 13 is crucial for the399

robustness of the model.400

Using the same features, functional form of Eq. 13, and401

NN architecture for mapping the features at a given r to402

wc(r), we can now isolate the difference between using403

LES and GES for NN training of a DFA [cyan vs. maroon404

diamonds in Fig. 1(a)]. For simplicity and to create a405

challenging transferability test, we train our ML2-based406

NN only on eight small closed-shell atoms/ions (H−, He,407

Be, Ne, Mg, Ar, Ca, and Kr). The total loss is calculated408

as the mean over these eight datapoints, as detailed in409

Sec. S8 in the SI. We validate our training on comparable410

small closed-shell atoms/ions (see Fig. S4) in the SI.411

In Fig. 1(c), we explore GES-based vs. LES-based412

ML2 results (cyan vs. maroon diamonds). Both en-413

ergy densities are plotted against the eκMP2
c (r) reference414

in Fig. 1(c,top) for the Mg atom as one of the train-415

ing datapoints. We can see that eML2
c (r) based on LES416

closely follows the eκMP2
c (r) (proxy) reference, whereas417

the GES-based eML2
c (r) completely misses the shape of418
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(a)
(b)

Fig. 3: Errors of LES-based ML2 with respect to κMP2 at different learning epochs. (a): Absolute (local) error in
correlation energy densities for the Helium atom. (b): Absolute global energy error of ML2 (LES) for LiH along its dissociation curve.

the reference. But, can we, solely based on this observa-419

tion, conclude that LES is better than GES? We need to420

be careful here, as these correlation energy densities are421

not observables even within our physically sound gauge422

(see previous section). Instead, they are used here to423

enhance energy training data efficiency in ML of DFAs,424

expanding from one to thousands of energy datapoints425

per system. Thus, what ultimately matters for judging426

the quality of GES vs. LES training are the integrated427

correlation energies (Eq. 1) once we go outside of the428

training set.429

For the Mg case in Fig. 1(c,top), all energy densi-430

ties integrate to nearly the same correlation energy by431

Eq. 1. However, the correlation energies from our GES-432

based and LES-based ML2 models differ dramatically433

when tested for transferability. The first such test is434

shown in Fig. 1(c,bottom), where we see major dif-435

ferences in accuracy when applied to stretching the BH436

diatomic system along its dissociation curve. The LES-437

based model closely follows the eκMP2
c (r) (proxy) refer-438

ence result, while the GES-based model is not sufficiently439

accurate even at equilibrium and breaks down completely440

as the bond is stretched.441

The advantages of LES-based learning process442

After seeing in Fig. 1(c,bottom) that LES-based ML2443

trained only on atomic systems successfully transfers to444

the BH diatomic along its dissociation curve, we now in-445

vestigate this atom to diatomics transferability in more446

detail. Namely, a closer look at the learning process of447

the LES-based ML2 is given in Fig. 3a, where panel (a)448

shows the absolute error in eML2
c (r) for the He atom449

(one of ML2’s training points) at different epochs. On450

the other hand, panel (b) focuses on the test and shows451

the absolute error in the ML2 correlation energy along452

the LiH dissociation curve for the same set of epochs.453

Overall, Fig. 3a shows that the pointwise improvement454

in eML2
c (r) for the He atom during training translates455

epoch by epoch into improved correlation energies for456

the unseen LiH system, as indicated by the decreasing457

errors with increasing epochs in panel(b). In contrast458

to that, the GES-based model yields no improvements459

of the transferability from atoms as the learning process460

progresses (see Fig. S5 in the SI exposing poor transfer-461

ability to diatomics, especially at large distances even at462

large epochs). Furthermore, we observe another crucial463

difference between GES-based and LES-based learning:464

when LES is used as the loss function, the learning pro-465

cess is much smoother and it has a much faster conver-466

gence with respect to learning steps (epochs) compared467

to GES (see Fig. S6 in the SI).468

Finishing off, by making energies more information-469

rich through LES in the training, we equip our mod-470

els with a high level of transferability, ensuring that any471

information learned from atoms lead to better perfor-472

mance on molecules. LES reveals information completely473

washed away with GES, showing that combinations of474

features and corresponding energy densities per particle,475

even for atoms, are highly relevant for molecules. Thus,476

LES provides a powerful strategy for ML of transferable477

DFAs, and it what follows we will explore more subtle478

details linked to the LES-based training.479

Uniqueness and Robustness of our LES-based ML2 model480

Building on the successful LES-based ML2 transfer-481

ability from atoms to challenging BH and LiH dissoci-482
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(a) (b)

(c) (d)

Fig. 4: Dissociation curves as in Fig. 1(c,bottom), but for four different systems with additional data for comparison.
(a): BH curves including ML2 results that employ LES with proxy correlation energy densities coming from different a−parameter
dependent gauges (see Eq. 14. (b): H2 curves including ’directly learned’ model, that learns ēκMP2

c (r) of κMP2, based on ’direct loss’
(see text). (c): BeH+ curves including GES-based and LES-based ML2 results coming from different random seed initializations. (d):
LiH curves including additional ML2 results coming from NNs with different total number of neurons (see Fig. S11 in the SI for the
distribution of neurons per hidden layer).

ations, Fig. 4 shows dissociation curves for four addi-483

tional diatomics, further confirming the LES’s advantage484

over GES, which can yield unphysical curves. The dis-485

sociation curves for closed-shell diatomics are obtained486

using a spin-restricted formalism to avoid artificial en-487

ergy lowering from spin-symmetry breaking (see Refs. 94–488

96 for discussions on the challenge of describing bond489

breaking without spin-symmetry breaking). We now490

present four analyses, each applied to a different curve491

from Fig. 4, to highlight distinct aspects of LES-based492

ML2 transferability. Importantly, the conclusions from493

each analysis are robust, consistently holding when cross-494

checked against other diatomics, as demonstrated in the495

SI (Figs. S7–S11).496

We first test whether the superior transferability of497

LES over GES from atoms to diatomics arises purely498

from LES’s higher data efficiency. Specifically, panels499

(a) and (b) of Fig. 4 show that this transferability is lost500

if the LES-based ML2 model is constructed without the501

physics encoded in Eq. 3 (LES defined via energy densi-502

ties per particle), Eq. 10 (specific ec(r) gauge), and Eq. 13503

(physically constrained ML2 functional form).504

To examine the sensitivity of ML2 training to the505

gauge choice of eκMP2
c (r) (Eq. 5), we introduce the fol-506

lowing gauge transformation:507

eac (r) = eκMP2
c (r) + a q(r)ρ2/3(r), (14)

with q(r) = [∇2ρ(r)]/[4(3π2)2/3ρ(r)5/3], and where the508

real parameter a does not affect the integrated correla-509

tion energy (Eq. 4) for exponentially decaying densities.510
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Instead of our original target, eκMP2
c (r), we now repeat511

the LES-based ML2 training using eac (r) as the target at512

various a values. In Fig. 4a, we test the transferability of513

the underlying a-dependent model by using the BH dis-514

sociation curve previously shown in Fig. 1(c,bottom).515

These curves become worse as we move away from a = 0516

(original LES-based ML2) and even become unphysical517

at larger a (the results for other diatomic dissociation518

curves follow similar trends as shown in Fig. S7 in the519

SI). Observing eac (r) for atoms (train) and BH (test)520

in Fig. S8 in the SI, we see that at a = 0, the range521

and shape of eac (r) varies much less between train and522

test systems compared to larger a values, explaining why523

the original LES-based ML2 (a = 0) exhibits the best524

transferability. While Eq. 14 does not cover all possible525

gauges, our tests show that the transferability from atoms526

to diatomics achieved by our gauge is highly nontrivial,527

and that superior performance of LES over GES in our528

ML2 model is not solely due to higher data efficiency529

but critically depends on the gauge choice (Eq. 10) for530

the eML
c (r) training target (observe how κMP2 is more531

amenable for ML in Fig. S8 in the SI).532

To further demonstrate that data efficiency alone is533

insufficient for ML2’s success, we compare dissociation534

curves for H2 from various models in Fig. 4b. The fig-535

ure highlights the importance of defining LES in terms of536

energy densities per particle (Eq. 3) and employing the537

physically constrained LES-based ML2 form (Eq. 13). If,538

instead of LES, the loss is defined directly via energy539

densities (not per particle)97–99, Ldirect ∼
∫ ∣∣∣∣ēref

c (r) −540

ēML
c (r)

∣∣∣∣dr, then the resulting model (“directly learned”)541

performs as bad as the GES-based model (see Fig. 4b).542

Additional examples of even more drastic failures of543

Ldirect-based learning, illustrating the subtle yet crucial544

importance of learning ec(r) rather than ēc(r), are shown545

in Fig. S9 in the SI. The poor model’s transferability546

when direct loss is used (learning ēML
c (r)) in place of LES547

(learning eML
c (r)) is unsurprising, given that both ec(r)548

and the ML2 weights, wc(r) = ec(r)/(ex(r)ρ
−1/3(r))549

(Eq. 13), are far less sensitive to variations in system size550

than ēc(r) = ec(r)ρ(r). This comparison further empha-551

sizes that LES-based ML2’s transferability success does552

not rely solely on higher data efficiency than GES, but553

critically depends on the synergy between this efficiency554

and the physics embedded in Eqs. 3, 10, and 13..555

Finally, we demonstrate the robustness of LES-based556

ML2 with respect to NN training conditions: unlike GES,557

LES-based ML2 remains stable under variations in ran-558

dom initialization seeds (Fig. 4c for BeH+; additional559

examples in Fig. S10 in the SI) and NN architecture,560

including the number of neurons (Fig. 4d for LiH; addi-561

tional examples in Fig. S11 in the SI). We also show in562

Fig. S12 in the SI that the use of mean square-based LES563

(i.e. LES2 instead of the original absolute differences-564

based LES of Eq. 3 has little effect on the ML2 results.565

Additionally, we show that when progressively increasing566

the training dataset size, LES remains more robust than567

GES for diatomic dissociation curves (Fig. S13 in the568

SI). Overall, the robustness and uniqueness of the LES-569

based ML2 model demonstrated in this section further570

emphasize the advantages of LES-based ML2.571

SPIN-RESOLVED AND REGULARIZED MODELLING OF572

THE CORRELATION ENERGY DENSITY573

Fig. 5: Test result of MLS2. Dissociation energy curve of the
BH diatomic system, as in Fig. 1(c,bottom), but with additional
models (reference values (Ref) taken from Ref. 100).

In the previous section we have shown that LES en-574

hances the transferability of ML DFAs. Yet, κMP2 cor-575

relation has been the proxy reference in place of its ex-576

act counterpart. In this section, we use our regularized577

PT2-based generator for a NN-based combination of the578

spin-resolved κMP2 energy densities to bridge the gap579

between κMP2 and true correlation energies. For this580

purpose, our ML model for correlation energy densities581

per particle is defined as582

eMLS2
c (r) = wos(r)e

κMP2
c,os (r) + wss(r)e

κMP2
c,ss (r), (15)

where wos(r) and wss(r) are machine-learned weights at583

every point in space. We call it MLS2, which represents584

a real-space, machine-learned and regularized extension585

of SCS MP274,75. Its construction is represented by the586

step from orange and purple squares to the green dia-587

mond in Fig. 1(a). By leveraging our implementation of588

spin-resolved wos(r)e
κMP2
c,os (r) and wss(r)e

κMP2
c,ss (r), Eq. 15589

yields a regularized and real-space extension of SCS MP2,590

thus opening up avenues for DFAs creation.591

To obtain wos(r) and wss(r) in MLS2 using a NN, we592

employ a similar architecture as for the ML2 model (see593

Fig. 1(b)) with some crucial differences. First, unlike594

the MP2 correlation energy, the true correlation energy595

is generally not scale invariant93. This allows us con-596

trary to ML2 (see Eq. 12 and the preceding paragraph)597
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to incorporate also density-based features, specifically,598

the Wigner-Seitz radius. Second, a sigmoid activation599

function is applied to the NN’s output layer (more de-600

tails on the activation functions between layers are given601

in Methods), constraining the MLS2 weights between 0602

and 1. We scale the resulting NN weights wos(r) and603

wss(r) by a constant factor of 10 before applying them604

in Eq. 15. This scaling enables the MLS2 model to be605

accurate for the cases where the true correlation energy606

(in absolute terms) is much larger than what κMP2 pre-607

dicts (see Sec. S11 in the SI for more details). Finally,608

we use eκMP2
c (r) and eκMP2

c,os (r) quantities normalized by609

ρ−1/3(r)ex(r) as extra MLS2 dimensionless features (see610

Sec. S6 in the SI for a detailed list of features).611

Ideally, with access to a robust data generator for the612

exact ec(r), we could use LES to train eMLS2
c (r). How-613

ever, due to the severe computational limitations of such614

a generator81,101 to very small systems and basis sets,615

we settle with a GES-based training of MLS2 (the re-616

sulting loss function is detailed in Sec. S8 in the SI). Us-617

ing GES here requires more data for training. Thus, we618

employ the eight atoms/ions training dataset from ML2619

combined with 13 small closed-shell molecules, mainly620

dimers, and correlation energies of H2, N2 and Li2 at five621

geometries of large interatomic distances. In addition to622

these total energies, our MLS2 NN is also trained on in-623

teraction energies from the RG18 dataset102, including624

dispersion-bound complexes with noble gases. We elab-625

orate in Sec. S8 of the SI on how we combine the total626

energy-based GES and the interaction energy-based GES627

when training MLS2. Furthermore, a detailed MLS2’s628

list of all training data points is given in Sec. S12 of the629

SI.630

To test MLS2, we go back to Fig. 1(d,bottom), which631

includes results for 96 total correlation energies from the632

W4-11 database65 not present in the training set (see Sec.633

S12 in the SI for a full list and how we obtain the under-634

lying reference total correlation energies). Specifically,635

Fig. 1(d,bottom) shows the relative absolute correla-636

tion energy errors for κMP2, MP2 and MLS2. Note the637

log-scale in the y-axis and the dashed lines represent-638

ing mean absolute relative errors (MArEs). Going from639

MP2 to κMP2 (from magenta circles to blue squares), we640

can see that the introduction of the κ= 2.0 regularization641

slightly increases the MP2 errors. On the other hand, our642

MLS2 model (green diamonds) yields here far more accu-643

rate correlation energies than MP2, with MArE reduced644

by from ∼10% to 1%.645

In Fig. 5, we revisit the dissociation curve of BH to646

test MLS2 as the bond stretches and include additional647

methods beyond those shown in Fig. 1(c,bottom). Un-648

surprisingly, MP2 (magenta curve) fails to capture the649

correct physics of BH bond stretching due to the di-650

vergence of its correlation energies when the HOMO-651

LUMO orbital gap closes (see Eq. 7). κMP2 (blue curve;652

Eq. 9) eliminates this divergence, but its energies are653

much higher than the exact ones when the bond stretches.654

In contrast, MLS2 is more accurate than κMP2 not only655

when the unseen BH bond stretches but also at equilib-656

rium (see also Fig. S15 in the SI for training results of657

N2 and H2 bond stretches). This demonstrates the power658

of MLS2 to successfully dissociate covalent bonds with-659

out breaking spin symmetries, which is, as said, a cru-660

cial challenge for quantum chemistry methods94–96,103.661

In MLS2, this is achieved by first employing κMP2 to662

eliminate the divergence present in MP2, followed by663

real-space NN-based enhancements of its spin-resolved664

energy densities (see Eq. 15).665

Finally, revisiting Fig. 1(e, top) with the formic acid666

dimer interaction energy curve, we test the performance667

of MLS2 for hydrogen-bonded systems. The formic acid668

dimer is selected because of its two hydrogen bonds with669

a strong electrostatic component, making it a system that670

starkly contrasts the dispersion-bonded RG18 systems on671

which MLS2 was trained. Overall, MP2 overbinds the672

formic acid dimer, with κMP2 overbinding even more,673

while MLS2 outperforms both in predicting the dimer’s674

interaction energies.675

We observe similar improvements of MLS2 over κMP2676

for other dissociation curves of noncovalent systems from677

the S22x5 dataset64(see Fig. S16 in the SI). These results678

further confirm MLS2’s transferability, as it successfully679

extrapolates from dispersion-bound systems (RG18) to680

distinctly different noncovalent interactions, such as hy-681

drogen bonds.682

Fig. 6: Energy MAEs (kcal mol−1) of various models for subsets
of the GMTKN55 database104 and the additional W4-11RE
set105. MLS2 is trained on W4-11 atomization energies65
(MLS2@W4). The results for RG18 dataset102 are scaled by a
factor of 10 for better visibility.

To go beyond the closed-shell systems considered so683

far and demonstrate MLS2’s broader applicability, we684

retrain it on the W4-11 atomization energy dataset65685

and test its performance on representative subsets of686

GMTKN55 (a large main-group database)104. We de-687

note this variant as MLS2@W4. Since the MLS2@W4688

training and test sets include open-shell systems, we689

supplement the existing MLS2 features (Sec. S6 in the690
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SI) with the spin polarization function ζ(r) (Eq. S12691

in the SI). In Fig. 6, we summarize MLS2@W4 per-692

formance with the MAEs testing its transferability from693

W4-atomizations to unseen energy types (see Sec. S13 in694

the SI for further details): reaction energies (W4-11RE)695

with ∼11k reaction data points derived from the W4-696

11 total energies105, dissociation energies of small open-697

shell cationic dimers (SIE4x4)106, barrier heights (BH76)698

and reaction energies (BH76RC)104, and non-covalent in-699

teraction energies104(RG18). Results for MP2, κMP2,700

and state-of-the-art double-hybrid DFAs (ωB97M(2)107701

and revDSD-PBEP86-D4108) are included for compari-702

son. First, Fig. 6 shows that MLS2@W4 clearly outper-703

forms MP2 and κMP2 with a very good transferability704

from atomization to other energies. Second, although the705

two double hybrids perform better for barrier heights and706

reaction energies (energy types included in their training707

and unseen by MLS2@W4), MLS2@W4 still achieves rea-708

sonable accuracy for these sets. However, for the SIE4x4709

dataset, which is very difficult for the standard DFAs due710

to self-interaction errors104, with MAE slightly below711

1 kcal/mol, MLS2@W4 impressively outperforms both712

double hybrids by a factor of ∼ 5. Overall, MLS2@W4713

stands out as the most robust method considered here,714

being the only one that achieves MAE below 4 kcal mol−1
715

across all tested datasets. This further confirms that the716

general MLS2 framework combining ML with Eq. 15 is717

highly promising for developing future DFAs.718

In view of the good MLS2 performance, it is impor-719

tant to note the regularizing role of Eq. 15. In addition720

to using a full amount of exact exchange (correlation here721

modeled relative to the HF reference), Eq. 15 ensures that722

MLS2 is exact for one-electron systems (EMLS2
c = 0).723

This is because, eMLS2
c (r) = eκMP2

c,ss (r) = eκMP2
c,os (r) = 0 for724

N = 1, irrespective of the weights produced by the NN.725

This good property of MLS2 and likely its good transfer-726

ability would be easily lost if other terms (e.g., exchange727

energy density or semilocal quantities multiplied by cor-728

responding ML weights) are added to Eq. 15. Crucially,729

through the specific use of Eq. 15 and NNs, MLS2 pro-730

vides a way of employing semilocal features [e.g., s(r)]731

while still satisfying the one-electron constraint, in con-732

trast to double hybrids, which violate this constraint due733

to their way of employing semilocal features. Conse-734

quently, MLS2@W4 is not only exact for one-electron735

systems such as H+
2 (by contrast, the two double hybrids736

yield substantial errors upon stretching H+
2 as shown737

in Fig. S17 in the SI), but also performs well for self-738

interaction cases involving more electrons given its excel-739

lent performance on SIE4x4.740

DISCUSSION741

To address the urgent need for transferable ML DFAs,742

we introduce and analyze several key strategies based on743

real-space energy learning. By leveraging our regular-744

ized, spin-resolved PT2-based correlation energy density745

generator, we pursue two directions, each demonstrating746

a distinct aspect of the power of real-space ML for DFAs.747

ML2 demonstrates the power of LES. The first direc-748

tion, ML2, leverages eκMP2
c (r) (Eq. 5) as a proxy ref-749

erence for LES-based learning. While LES intrinsically750

expands a single energy datapoint of GES into thousands751

per molecule (each grid point becoming a distinct train-752

ing datapoint), this data efficiency advantage is fully re-753

alized only when specific physical considerations are ac-754

counted for. These include the use of energy density755

per particle as the learning target (Eq. 3), adopting the756

physically meaningful gauge (Eq. 5), and employing a757

physically-informed ML model (Eq. 13). When these758

conditions are met, LES provides significantly greater759

transferability compared to commonly used GES. In par-760

ticular, our ML2 model trained solely on a small set761

of atoms effectively generalizes to diatomic dissociation762

curves. Moreover, under these physically-informed con-763

ditions, LES not only enhances transferability but also764

leads to smoother and faster learning convergence, as well765

as robustness with respect to variations in ML training766

conditions compared to GES.767

MLS2 leverages our local quantities to open up ML768

DFAs avenues. In the second direction, MLS2, we lever-769

age our eκMP2
c (r) and its decomposition into same-spin770

and opposite-spin channels to open new avenues for ML771

DFAs. Specifically, MLS2 generalizes spin-component-772

scaled MP2 by scaling each spin channel locally with773

NN weights (Eq. 15), combined with Head-Gordon’s κ-774

regularization. MLS2 improves over κMP2 across di-775

verse systems, achieves competitive accuracy compared776

to modern double hybrids, and outperforms them for777

challenging systems affected by self-interaction errors.778

Going back to the demonstrated power of LES over779

GES in the proof-of-principle ML2 model based on the780

κMP2 reference calls for developing robust energy den-781

sity generators at higher levels of theory. This will be782

a crucial objective in our future work, with the first783

step already taken in Ref. 67, which enables obtaining784

ec(r) from full configuration interaction (FCI) wavefunc-785

tions, with the procedure being easily adaptable to other786

variational wavefunctions. To learn higher-level ec(r),787

one can adapt the LES-based ML2 model, currently de-788

signed for eκMP2
c (r), by adding rs in the features list and789

modifying Eq. 13. Nevertheless, we believe that a more790

controlled approach for ML of higher-level ec(r) can be791

achieved by integrating ML2 and MLS2 as follows. Using792

higher-level energy densities per particle, we can imple-793

ment LES-based training for MLS2, while simultaneously794

replacing eκMP2
c,os (r) and eκMP2

c,ss (r) of Eq. 15 with their795

ML2-based surrogates. This replacement avoids these796

two more expensive quantities in post-training calcula-797

tions while leveraging existing ML2 physics (Eq. 13).798

Within the MPAC framework that we use here to799

demonstrate the advantages of LES67, the input den-800

sity is fixed to HF, and the learning target is exclusively801

the energy, allowing us to clearly focus on the effects of802

LES as a real-space learning strategy for DFAs. At the803
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same time, this does not imply that density learning, as804

a complementary real-space learning strategy, should be805

abandoned within frameworks where both densities and806

energies are learning targets. E.g., in DFA development807

within KS DFT, where both energies and densities are808

learning targets, loss functions can incorporate the LES809

term alongside density term (see, e.g., Refs. 31 and 34),810

or even further sophisticate such loss functions by using811

the specific link between energy densities and correlation812

potential109. Such combined strategies would leverage813

strengths of both real-space approaches, which we plan814

to explore in future work.815

While we demonstrate here several advantages of LES816

over GES, the strength of GES is that it can readily lever-817

age existing global energy data from extensive chemical818

databases (e.g., GMTKN55). Computing high-level en-819

ergy densities per particle for every system in such large820

databases would be impractical and likely unnecessary,821

particularly given the high transferability potential of822

LES demonstrated here using data from just eight atoms.823

Thus, a practical approach would be to design a loss func-824

tion incorporating both GES and LES terms: employing825

GES for existing global energy data while strategically826

complementing it with LES-based training on carefully827

selected subsets (e.g., a dozen atoms and representa-828

tive molecules from "Slim" subsets110 of GMTKN55) to829

leverage its power for embedding transferability into ML830

DFAs.831

METHODS832

Computational details833

All electronic structure calculations were performed us-834

ing the PySCF 2.3.0 program package111,112 within the835

Python coding environment113 v3.11.4.836

For the evaluations in Fig. 1(d), Fig. 2, Fig. 6 and837

Fig. S3, Table S1, Table S2, Fig. S17, Fig. S18, Fig. S19838

and Fig. S20 in the SI, we have used def2-QZVPPD basis839

set114,115, while for the rest, unless specified otherwise,840

we have used def2-QZVP basis set114. Our implementa-841

tion of the MP2 correlation energy density generator uses842

the Python package for optimizing tensor contractions88843

together with JAX73 to enable parallelization and high-844

performance platform agnostic evaluation of the energy845

densities. For the energy density generation, we also846

employ the density fitting86,87 (DF) approximation for847

MP2 with the def2-QZVP(PD)-RI auxiliary basis set.848

We adapt the same DF code and combine it with the849

def2-universal-jkfit auxiliary basis set to calculate the ex-850

change energy density. In Sec. S3 in the SI, we discuss851

the effect on the accuracy from the numerical integration852

with respect to the DFT grid116 and from the use of DF.853

For the regularized correlation energy density data854

generation, we set κ = 2 throughout this work unless855

otherwise specified.856

Reference correlation energies are taken from speci-857

fied references or obtained from CCSD(T) calculations858

in PySCF.859

Neural Network training860

The neural network training was performed with the861

Pytorch 2.1.2 deep learning library117. The input fea-862

tures (Sec. S6 in the SI) were obtained in Python from863

the HF PySCF output of the given chemical system864

and pointwise evaluated on the DFT grid116. In par-865

ticular, two FOD features at electronic temperatures866

T1 = 10000K and T2 = 25000K were employed for867

every system. Their implementation is based on the868

formula from Ref. 62, which we divide by the density869

to obtain a dimensionless quantity. We employed the870

Adam optimizer118 in Pytorch for NN training with cus-871

tom learning rates incorporating a warm-up period and872

a fixed number of training steps (epochs).873

ML2 was trained on eight small closed-shell atoms/ions874

(H−, He, Be, Mg, Ne, Ar, Ca, and Kr). The architecture875

of the neural network for ML2 has three hidden layers,876

each consisting of 16 neurons. In ML2, we apply hyper-877

bolic tangent (tanh) activation functions to the NN out-878

put layers, bounding the ML2 weights between −1 and879

1 (for a concrete example illustrating the range of LES-880

based ML2 wc(r) weights that justifies this choice, see881

Fig. S20 in the SI). For simplicity, the same tanh activa-882

tion is also used for all hidden layers. All models in this883

work are optimized by using either the LES-based or the884

GES-based loss function (see Sec. S8 in the SI for specific885

details). In ML2, the learning rate follows an exponen-886

tial decay that continues over 5000 epochs including the887

warm-up phase.888

A detailed overview of the training set for the first889

MLS2 example is given in Sec. S12 in the SI. For the ar-890

chitecture of the MLS2’s NN, we used four hidden layers891

with 64 neurons each. Following the ML2 architecture,892

in MLS2 we also use tanh activation function for the hid-893

den layers, while the sigmoid function is applied to the894

output layer to constrain the MLS2 weights between 0895

and 1 before scaling them by a factor of 10 (see Sec. S11896

in the SI for further details on MLS2 construction). The897

total loss function contains total and interaction correla-898

tion energy errors, as detailed in Sec. S8 in the SI. Here,899

the learning rate follows also an exponential decay over900

1000 epochs.901

The original MLS2 architecture (4×64) is also used for902

MLS2@W4, and in Fig. S18 in the SI, we compare alter-903

native NN architectures and show that 4×64 offers mod-904

est improvements in validation loss over smaller mod-905

els, motivating its use. Additionally, we performed906

ten training runs of MLS2@W4 with different random907

seed initializations (see Fig. S19 in the SI for results of908

each run). From these ten runs, the final MLS2@W4 NN909

shown in Fig. 6 was selected based on the lowest MAE910

on the entire W4-11 set used for training and valida-911

tion. Since MLS2@W4 also involves open-shell systems,912
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we have used unrestricted Hartree–Fock (UHF) orbitals.913

Following Ref. 119 of Sim and co-workers, constrained-914

UHF (CUHF) was employed for reactions where UHF915

orbitals exhibited spin contamination following the crite-916

rion from Ref. 120. For further MLS2@W4 training and917

testing details, see Sec. S13 in the SI..918
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S1. MP2-BASED CORRELATION ENERGY DENSITY23

In this section, we give a brief summary of how how our recently introduced Møller–Plesset24

adiabatic connection (MPAC) correlation energy density framework1 yields the MP2 cor-25

relation energy density per particle (Eq. 5). Consider the following coupling constant26

λ-dependent Hamiltonian1,2 for N -electron system:27

Ĥλ = T̂ + V̂ext + λV̂ee + (1− λ)(Ĵ + K̂), (S1)

where T̂ is the kinetic energy operator, V̂ext the external potential, V̂ee the electron-electron28

interaction, and Ĵ and K̂ are the standard HF Coulomb and exchange operators, defined in29

terms of the HF density and orbitals, respectively. Let Ψλ be the ground-state wavefunction30

of Ĥλ. Then, the MPAC integral expression for correlation energy (true - HF energy) reads,31

Ec =

∫ 1

0

Eλ
c dλ, (S2)

where Eλ
c is defined as32

Eλ
c =

〈
Ψλ

∣∣∣ V̂ee − Ĵ − K̂
∣∣∣Ψλ

〉
−
〈
Ψ0

∣∣∣ V̂ee − Ĵ − K̂
∣∣∣Ψ0

〉
. (S3)

33

In Ref. 1, the expression for eλc (r) was derived using a gauge analogous to the correlation34

hole in DFT, which, upon λ-integration [Eq. S2], yields the corresponding ec(r),35

Ec =

∫
ec(r)ρ(r)dr =

∫ [∫ 1

0

eλc (r)dλ

]
ρ(r)dr. (S4)

Expanding eλc (r) in the small-λ limit (see Ref. 1 for further details), yields,36

eλc (r) ≈ e′c(r)λ =
1

2ρ(r)

∫
P ′
2(r, r

′)

|r− r′|
dr′λ for λ→ 0, (S5)

where,37

e′c(r) =
d

dλ
eλc (r)

∣∣∣∣
λ=0

(S6a)

PMP2
2 (r, r′) = P ′

2(r, r
′) =

d

dλ
P λ
2 (r, r

′)

∣∣∣∣
λ=0

(S6b)

P λ
2 (r, r

′) = N(N − 1)

∫
|Ψλ(r, r

′, r3, . . . , rN)|2 dr3 · · · drN (S6c)

with P λ
2 (r, r

′) being the λ- dependent pair density, where real Ψλ is assumed in Eq. S6c.38

By virtue of Eq. S6b, PMP2
2 (r, r′) = P ′

2(r, r
′) corresponds to the first-order derivative of the39

pair density P λ
2 (r, r

′) with respect to λ, evaluated at λ = 0. Therefore, it contains only the40

correlation component, and resolving it in terms of HF orbitals yields1,41

PMP2
2 (r, r′) = −2

∑
ijab

tabij
(
ϕi(r)ϕj(r

′)ϕa(r
′)ϕb(r)δiaδjb − ϕi(r)ϕj(r)ϕa(r

′)ϕb(r
′)δibδja

)
, (S7)
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where δ is the Kronecker δ over two spin indices and tabij are the MP2 double amplitudes,42

tabij = Tijabδiaδjb − Tijbaδibδja, with Tijab = ⟨ij|ab⟩
εa+εb−εi−εj

defined as the partial MP2 double43

amplitudes in Eq. (7) using orbital energies, ε, and two-electron integrals, ⟨ij|ab⟩. Finally,44

taking the λ-integral from Eq. S4 of Eq. S5 yields,45

ec(r) ≈
1

2
e′c(r) = eMP2

c (r) =
1

4ρ(r)

∫
PMP2
2 (r, r′)

|r− r′|
dr′. (S8)

Applying the κ-regularization3,4 to the partial MP2 double amplitudes (see Eq. (9)),

T κ
ijab = Tijab

(
1− e−κ(εa+εb−εi−εj)

)2
,

results in P κMP2
2 (r, r′), which is the regularized expression of Eq. S7, and thus, we have46

eκMP2
c (r) from Eq. 10.47

48

S2. EFFECT OF REGULARIZATION ON MP2 RESULTS49

Fig. S1: κMP2-based dissociation energy curve of N2 with different κ values. MP2 corresponds
to κ → ∞. Reference (Ref) taken from Ref. 5.
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S3. IMPLEMENTATION TECHNIQUES OF THE MP2 CORRELATION50

ENERGY DENSITY GENERATOR51

This section is devoted to the numerical settings of our MP2 correlation energy density52

implementation in the Python coding language6. The resulting generator reads the relevant53

atomic orbital functions from a HF treatment using the PySCF library7,8 and performs the54

necessary MP2-based integrations and tensor contractions. This procedure scales similar to55

other second-order perturbation theory derived models, and thus, we can employ some ap-56

proximation techniques to enhance the applicability and efficiency of our code. The resulting57

accuracy can be assessed using the correlation energy result from the already implemented58

MP2 module in PySCF (refMP2).59

For the following discussion, we introduce some notation for the orbitals:60

• the molecular orbital functions (MOs) ϕi;61

• the atomic orbital functions (AOs) χn;62

• the auxiliary basis functions ψt.63

Expanding the MOs inside the integral of Vijab(r) in AO basis, ϕi(r) =
∑

nCniχn(r),64

yields65

Vijab(r) = ϕi(r)ϕa(r)
∑
m,n

CmjCnb

∫
χm(r

′)χn(r
′)

|r− r′|
dr′

= ϕi(r)ϕa(r)
∑
m,n

CmjCnbAmn(r), (S9)

where we define the tensor integral

Amn(r) =

∫
χm(r

′)χn(r
′)

|r− r′|
dr′.

Density Fitting9,10 (DF) is a common strategy for MP2 to improve the scaling of the66

two-electron integral evaluations. It uses an auxiliary basis to expand the direct product67

of AOs, χm(r)χn(r) =
∑

tQmntψt(r). This allows a one order of magnitude speed increase68

of our code since the resulting integral evaluation only scales linearly with the basis set (or69

number of electrons). Specifically, the orbital potential Vijab(r) from Eq. S9 then becomes70

Vijab(r) = ϕi(r)ϕa(r)
∑
m,n,t

CmjCnbQmnt

∫
ψt(r

′)

|r− r′|
dr′. (S10)

Employing a tensor notation for the integral

It(r) =

∫
ψt(r

′)

|r− r′|
dr′

results in the following density fitted orbital potential formulation:71

Vijab(r) = ϕi(r)ϕa(r)
∑
m,n,t

CmjCnbQmntIt(r). (S11)
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Fig. S2: Relative interaction energy error. The shown data is evaluated with respect to the refMP2
value (−0.0029 kcal mol−1) at different DFT discretization grid-levels11 for Ne2 at equilibrium (geometry
taken from Ref. 12). Plotted are the results with and without the DF approximation.

We assess correlation energy error due to DF using interaction energies. For example,72

the relative absolute interaction energy error with respect to refMP2 for Ne2 is plotted in73

Fig. S2 at different DFT discretization grid levels11.74

As expected, the error in correlation energy with respect to refMP2 vanishes as the grid75

size increases. It shows furthermore how the default grid-level (3) is already very accurate76

with an error below 0.01% in the interaction energy. Using the DF approximation results77

in a constant shift with higher integration accuracy. Nevertheless, this difference is still78

negligible relative to the refMP2 interaction energy. Throughout the rest of this work, we79

always employ the DF approximation, expecting negligible errors arising from it.80

6
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S4. ADDITIONAL ∆PMP2
2 (r, r′) PLOTS FOR STRETCHED HELIUM81

DIMER82

(a)

(b)

(c)

Fig. S3: Visualization of ∆ēMP2
c (z) plotted as in Fig. 2a. Panels S3a–S3c differ in their ∆PMP2

2 (z0, z
′)

inset plots, which are given at three different z0 positions.
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83

S5. REGULARIZED MP2 INTERACTION ENERGIES84

κ 0.2 0.4 0.6 0.8 1.0 1.2 1.4 2.0 ∞

EκMP2 0.0089 0.0011 -0.0024 -0.0044 -0.0057 -0.0065 -0.0070 -0.0073 -0.0074

Table S1: Interaction energies (kcal mol−1) of the Helium dimer for different
κ-regularizations. Data corresponds to the energy density plots in Figs. 1(d,top) and 2a.
κ → ∞ represents the MP2 result without regularization. Additional interaction energies for comparison:
ECCSD(T) = −0.013 and EHF = 0.018.

Method Ref HF MP2 κMP2

E -1.5 1.13 -1.87 -1.58

Table S2: Interaction energies (kcal mol−1) of the benzene-methane complex. Data
corresponds to the interaction energy density visualizations in Figs. 2b– 2d. Reference value at
CCSD(T)/CBS level of theory taken from the S22 database13.
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85

S6. ML FEATURES FOR ML2 AND MLS286

We list in this section formulas of the DFT-based ML features that were used for the87

training of the ML2 and the MLS2 models. They are all implemented in Python as di-88

mensionless objects and then evaluated at every point of the DFT grid for the input data.89

90

ML features for ML2:91

• Reduced density gradient,

s(r) =
|∇ρ(r)|

2 (3π2)1/3 ρ4/3(r)
.

• Reduced density Laplacian,

q(r) =
∇2ρ(r)

4 (3π2)2/3 ρ5/3(r)
.

• Regularized kinetic energy variable from the r2SCAN DFA14,

α(r) =
τ(r)− τw(r)

3 (3π2)2/3 ρ5/3(r)/10 + ητw(r)
,

where η = 10−3, and

τ(r) =
1

2

∑
i

|∇ϕi(r)|2 and τw(r) =
|∇ρ(r)|2

8ρ(r)

are the kinetic energy density and the von Weizsäcker kinetic energy density.92

• Fractional occupation number weighted density15,16 (FOD) normalized by the density,

ρFOD(r) =
1

ρ(r)

∑
i

(δ1 − δ2fi)|ϕi(r)|2,

where δ1 and δ2 are chosen such that only fractionally occopied ϕi contribute to the
sum. The weights fi are given by the Fermi-Dirac distribution,

fi =
1

e(εi−EF )/kT + 1
.

Here, εi are orbital energies, EF is the Fermi energy and k = 3.166811563 × 10−6 is93

the Boltzmann constant in Hartree per Kelvin. The electronic temperature T is set94

to T1 = 10000K or T2 = 25000K, yielding two different FOD features for the neural95

network, ρFOD
1 and ρFOD

2 .96

9
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Additional features for MLS2 (on top of the ones used for ML2):97

• Wigner-Seitz radius,

rs(r) =

(
3

4πρ(r)

)1/3

.

• Normalized κMP2 correlation energy density,

ẽκMP2
c (r) =

eκMP2
c (r)

ρ−1/3(r)ex(r)
,

where ex(r) is the exchange energy density coming from the same gauge as eMP2
c (r).98

• Normalized os-κMP2 correlation energy density,

ẽκMP2
c,os (r) =

eκMP2
c,os (r)

ρ−1/3(r)ex(r)
.

• Spin polarization (for open-shell systems),99

ζ(r) =
ρα(r)− ρβ(r)

ρ(r)
, (S12)

defined in terms of the the spin densities ρα(r) and ρβ(r).100

10
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S7. SCALING INVARIANCE OF THE MP2 CORRELATION ENERGY101

DENSITY102

In this section, we derive the scaling invariance of the MP2 correlation energy density103

defined in Eq. 6 once evaluated on either KS or HF orbitals.104

Uniform density scaling17 scales the density with respect to a scalar γ > 0 as follows:105

ργ(r) = γ3ρ(γr). A direct consequence is the scaling of the corresponding orbitals:106

ϕ[ργ](r) = γ3/2ϕ[ρ](γr). (S13)

For the scaling invariance of eMP2
c (r), we need to show that the only real-valued exponent p

for which
eMP2
c [ργ](r) = γpeMP2

c [ρ](γr)

holds, is p = 0 (see Eq. 12).107

First, we derive the scaling of Tijab from Eq. 7. Its nominator has the same linear scaling108

(p = 1) as the electron-electron interaction density functional17, while the denominator109

depends on the scaling of orbital energies (see Ref. 18):110

εi[ργ] = γ2εi[ρ] (S14)

Combining now the scaling of the nominator and of the denominator of Eq. 7 gives111

Tijab[ργ] =
γ⟨ij|ab⟩

εi[ργ] + εj[ργ]− εa[ργ]− εb[ργ]

=
γ⟨ij|ab⟩

γ2εi[ρ] + γ2εj[ρ]− γ2εa[ρ]− γ2εb[ρ]

= γ−1 ⟨ij|ab⟩
εi[ρ] + εj[ρ]− εa[ρ]− εb[ρ]

= γ−1Tijab[ρ], (S15)

which shows the p = −1 scaling property of Tijab.112

Next, we derive the scaling of Vijab(r) from Eq. 8 using again the scaling property of113

orbitals and the transformation of the integral variable:114

Vijab[ργ](r) = ϕi[ργ](r)ϕj[ργ](r)

∫
ϕa[ργ](r

′)ϕb[ργ](r
′)

|r− r′|
dr′

= γ3/2ϕi[ρ](γr)γ
3/2ϕj[ρ](γr)

∫
γ3/2ϕa[ρ](γr

′)γ3/2ϕb[ρ](γr
′)

|r− r′|
dr′

= γ3ϕi[ρ](γr)ϕj[ρ](γr)

∫
ϕa[ρ](γr

′)ϕb[ρ](γr
′)

|γr− γr′|
γ4dr′

= γ3ϕi[ρ](γr)ϕj[ρ](γr)γ

∫
ϕa[ρ](s)ϕb[ρ](s)

|γr− s|
ds

= γ4Vijab[ρ](γr). (S16)

Finally, combining the results for Tijab (p = −1) from Eq. S15 and for Vijab(r) (p = 4) from115

Eq. S16 with the uniform density scaling (p = 3), concludes the scaling invariance of the116

11
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MP2 correlation energy density:117

eMP2
c [ργ](r) = − 1

4ργ(r)

∑
ijab

[
(Tijab[ργ]δiaδjb − Tijba[ργ]δibδja)(Vijab[ργ](r)δiaδjb − Vijba[ργ](r)δibδja

]
= − 1

4γ3ρ(γr)

∑
ijab

[
(γ−1Tijab[ρ]δiaδjb − γ−1Tijba[ρ]δibδja)(γ

4Vijab[ρ](γr)δiaδjb

−γ4Vijba[ρ](γr)δibδja
]

= − 1

4ρ(γr)

∑
ijab

[
(Tijab[ρ]δiaδjb − Tijba[ρ]δibδja)(Vijab[ρ](γr)δiaδjb − Vijba[ρ](γr)δibδja

]
= eMP2

c [ρ](γr). (S17)

The same scaling invariance also applies to eκMP2
c and to its spin-resolved components.118
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S8. LOSS FUNCTIONS FOR ML2 AND MLS2119

For the LES-based training of the ML2 neural network, we employ the mean of LLES120

from Eq. 3 scaled by the number of electrons:121

Mean(LES) =
1

M

M∑
k=1

Lk
LES

Nk

, (S18)

where M is the number of systems (M = 8 in our case: H−, He, Be, Mg, Ne, Ar, Ca,122

and Kr) and Nk indicates the number of electrons of the k-th system with Lk
LES being the123

corresponding k-th LES.124

The GES-based training of the ML2 neural network uses a similar mean of LGES from125

Eq. 2:126

Mean(GES) =
1

M

M∑
k=1

Lk
GES, (S19)

where Lk
GES is the GES of the k-th system.127

In the case of MLS2, we employ a GES combined with the interaction correlation energy128

error. First, the mean absolute relative error (MArE) is calculated via129

MArE =
1

M

M∑
k=1

Lk
GES

|Eref
c [ρk]|

, (S20)

with the density ρk indicating the reference correlation energy value of the k-th system.130

Second, we evaluate interaction GES (Lint-GES) using reference interaction energies (Eint-Ref
c )131

and employ the corresponding mean absolute relative interaction error (int-MArE) as132

int-MArE =
1

M

M∑
k=1

Lk
int-GES

|Eint-ref
c [ρk]|

. (S21)

The final total loss function is the average between MArE from Eq. S20 and int-MArE from133

Eq. S21.134
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S9. ADDITIONAL RESULTS FOR ML2135

In this section, additional data on validation, convergence, uniqueness and robustness are136

presented for the GES-based and LES-based ML2 models.137

As noted in the main paper, we use eight small closed-shell atoms/ions (H−, He, Be, Mg,138

Ne, Ar, Ca, and Kr) to train ML2. For ML2’s validation, we select ions of similar size to the139

training set (Li+, Ca2+, and Ne2+). Fig. S4 shows that the validation loss closely follows140

the training loss for LES-based ML2.141

Fig. S4: Training loss (a.u.) of the LES-based ML2 as a function of training steps (epochs).
The training dataset is H−, He, Be, Mg, Ne, Ar, Ca, and Kr. The validation dataset is Li+, Ca2+ and
Ne2+.

In Fig. S5, we show the absolute global energy error result for GES-based ML2 as a142

counterpart to Fig. 3b. Due to the sparse training dataset for the GES, our NN prediction143

of correlation energies gets worse at larger interatomic distances with increasing training144

epochs. Furthermore, the energy error is one order of magnitude higher in comparison to145

the results from the LES-based predictions in Fig. 3b, underscoring again the advantage146

of LES over GES.147

To study the learning process of the ML2 model, we define the following Relative Loss:148

Relative Loss ∼
∣∣∣∣ Loss(epochs)
Loss(zeroth epoch)

∣∣∣∣× 100, (S22)

In Fig. S6, we plot the Relative Loss with respect to training steps (epochs) of the GES-based149

and LES-based ML2 training. LES shows much faster and smoother convergence compared150

to the GES counterpart. This is another crucial advantage of LES over GES, in addition to151

data efficiency.152
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Fig. S5: GES-based ML2 global error as in Fig. 3b

Fig. S6: Relative Loss (see Eq. S22) of ML2 with respect to the initial loss value.
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(a) (b)

(c) (d)

Fig. S7: Dissociation curves as in Fig. 4a for additional diatomic systems. Since the wc(r)

weights from Eq. 13 for |a| > 0 are not necessarily bounded between −1 and 1, we learn them as
x(r) = tanh

(
eac (r)

ex(r)ρ−1/3(r)

)
, retrieving the ML correlation energies by applying tanh−1 to (x(r)), which

numerically reduces to ML2 (LES) when a = 0.
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(a) (b)

(c) (d)

Fig. S8: Gauge transformed correlation energy densites per particle (eac (r) from Eq. (14)).
(a) and (b): Atoms used in Training. eac (r) as in Figs. 1(c,top) of the Helium atom and the
Magnesium atom for different a values. (c) and (d): Diatomics used in Testing. eac (z) as in 1(d,top)
of BH at equilibrium interatomic distance (2.3 a.u.) and stretched (10 a.u.) for different a values.
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(a) (b)

(c) (d)

Fig. S9: Dissociation curves as in Fig. 4b for additional diatomic systems. The ML2 model
results are based on the GES-learned and LES-learned ML weights from Eq. 13, while the directly learned
predictions adopt a ’direct loss’ (see the main text) and learn the NN weights via tanh preprocessing
(similarly as in Fig. S7)
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(a) (b)

(c) (d)

Fig. S10: Dissociation curves as in Fig. 4c for additional diatomic systems.
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(a) (b) (c)

Fig. S11: Dissociation curves as in Fig. 4d with different NN architectures (the number of
neurons are given per layer).

In Fig. S12, we show dissociation curves for six diatomic systems similar to Fig. 1(c,bottom).153

Here, the GES-based and LES-based ML2 predictions are supplemented by ML2 results154

coming from a squared LES (see Eq. 3),155

L2
LES ∼

∫
|eref(r)− eML(r)|2ρ(r) dr. (S23)

We can observe in all plots in Fig. S12 that the transferability of the LES-based ML2 is not156

affected by the choice of the loss function.157
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(a) (b)

(c) (d)

Fig. S12: Dissociation curves as in Fig. 1(c,bottom) for additional diatomic systems. ML2
energy predictions in teal diamonds come from a squared LES training strategy (see Eq. S23).
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S10. TRAINING SET SIZE DEPENDENCE ON ML2 TRANSFERABILITY158

TO DIATOMICS159

The dissociation curve of BeH+ in Fig. S13a compares the proxy reference, κMP2160

and the GES-based and LES-based ML2 models once more data is progressively added161

to the training. Each “ML2 (GES)+” curve corresponds to a training set containing of the162

included eight small closed-shell atoms/ions and seven extra energy data points coming from163

geometries at and around the equilibrium structure of the labeled diatomic systems. These164

are (in order) H2, LiH, Li2, BH, CH+, N2 and BeH+. This means that at each step (each165

new addition), the NNs are retrained and applied to dissociation curves. While the final166

training set and additions at each step may not be large in absolute terms, they are major167

relative to the test (e.g., for the full BeH+ dissociation curve test, the final model includes168

in the training its own BeH+ points near-equilibrium) and the original atomic training set.169

LES-based ML2 trained on atoms already gives highly accurate dissociation curves and170

shows virtually no changes as more training data is added to LES-based ML2. In contrast,171

GES-based ML2, even after these extra points are added to the training set, is still out-172

performed by LES. While GES-based curves are improving after more data are added to173

the training, one can still observe unphysical discontinuities and "bumps"19 in some of the174

GES-based curves. In the final batch, we construct the most data-rich model, which even175

includes equilibrium BeH+ datapoints in its own training set. Yet, despite this expanded176

training, the GES-based ML2 remains insufficiently accurate for stretched BeH+ geometries,177

unlike the LES-based approach. Using these same models with increasing training data and178

applying them to the dissociation curves of the other three dimers shown in Fig. S13a,179

similar trends are observed.180

Finally, it should be noted that although the GES-based ML2 employs the global energy181

loss (Eq. 2) for training, it still uses the ML2 energy density per particle ansatz given by182

Eq. 13. This ansatz has been constructed based on the scaling constraint (Eq. 12) satisfied183

by eκMP2
c (r) within our chosen gauge. Consequently, GES-based ML2 is still partially in-184

formed by our energy densities per particle gauge, which in turn improves its transferability.185

Crucially, if instead of this GES that we use here, one employs “raw” GES—i.e., using Eq. 2186

to learn energy densities without the ansatz of Eq. 13, the resulting GES transferability187

would be even worse than shown here.188
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(a)

(b) (c) (d)

Fig. S13: Dissociation curve of BeH+ as in Fig. 1(c,bottom). The GES-based ML2 energies are
obtained from NN models obtained by progressively increasing training set size. For each labeled diatomic
molecule, seven energy training datapoints near its equilibrium geometry are added to the training set.
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S11. SCALING OF MLS2 WEIGHTS189

Fig. S14: Absolute ratio between correlation energies. Plotted is the energy ratio for H2 as a
function of interatomic distance.

The scaling of the machine-learned weights in Eq. 15 is important for the ability to predict190

correlation energies when the true value is much greater than those of κMP2. This situation191

is particularly pronounced when stretching bonds, see Fig. S14, where the ratio between192

the true and κMP2 correlation energies easily exceeds a factor of 4 once the H2 bond is193

stretched. Without this adjustment, the MLS2’s correlation energies could never be larger194

than those of κMP2, as wos(r) and wss(r) derived from the sigmoid activation function are195

bound between 0 and 1.196
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S12. TRAINING AND TEST DATASETS OF MLS2197

(a) (b)

Fig. S15: Dissociation energy curves as in Fig. S1 with additional HF and MLS2 results for
comparison. MLS2’s energy training data indicated as the cross-marked points on the Ref curve. (a):
Dissociation energy curve of H2. (b): Dissociation energy curve of N2.

For correlation energy data, the same eight small closed-shell atoms/ions (H−, He, Be,198

Mg, Ne, Ar, Ca, and Kr) as for ML2 are employed. Additionally, the following collection of199

13 small closed-shell complexes from the MB16-43 database20 is incorporated: Cl2, BeH2,200

NaH, H2, BH3, AlH3, MgH2, N2, SiH4, LiH, F2, CH4 and P2. Here, we calculate the reference201

correlation energies with CCSD(T)/def2-QZVP in PySCF7,8 for structures taken from the202

original dataset. We further train the MLS2 model on correlation energy data points from H2203

(calculated at full configuration interaction level of theory), N2 (taken from Ref. 5) and Li2204

(taken from Ref. 21) at five different large interatomic distances, namely (in a.u.) 4, 5, 6, 7205

and 8 for H2 (equilibrium at 1.4), 4, 6, 8, 9 and 10 for N2 (equilibrium at 2.1) and 5, 6, 7, 8.5206

and 10 for Li2 (equilibrium at 5.05). They are visualized, for instance, as cross-marked207

points in Fig. S15. We also plot the HF, MP2, and κMP2-based results for comparison in208

Figs. S15a and S15b respectively. Adding the training data points at large distances helps209

MLS2 to efficiently bridge the gap between regularized PT2 and true correlation energies.210

Finally, the reference data for the interaction energy training is obtained from all 18211

dispersion-bonded complexes in the RG18 dataset22. We employ the interaction correlation212

energies for the loss in Eq. S21 coming from the difference of HF interaction energies and213

the database reference values, which are obtained at the CCSD(T) level of theory using the214

complete basis set limit23,24 (CBS).215

From the W4-11 database25, we select for correlation energy testing the following sub-216

set of 96 closed-shell systems that are not included in our training set from above: AlF3,217

S4, cis-N2H2, HN3, HONC, trans-N2H2, HF, HCL, HCN, ethanol, CF4, BeF2, AlH, CS2,218

Cl2O, P4, HNC, S2O, CH2F2, CH2NH, BH, CCl2, N2H4, SO3, F2O, FCCF, BHF2, acetic219

acid, BF, NCCN, PH3, Be2, O3, B2H6, SiH3F, HCOF, AlF, BN, C2H6, CO, Si2H6, OCS,220

H2O, HOCN, CO2, allene, SO2, BeCl2, CF2, propene, acetaldehyde, NH3, CS, BF3, CH3F,221

NH2Cl, trans-HCOH, propane, C2H5F, SiF4, C2H3F, H2CO, oxirane, cis-HONO, formic222
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acid, methanol, AlCl3, S3, ClCN, CH2, ClF, HCCF, H2S, cis-HCOH, HOF, C2, SiO, C2H4,223

ketene, CH2C, HCNO, HNO, propyne, oxirene, dioxirane, C2H2, CH3NH2, trans-HONO,224

FOOF, N2O, F2CO, HNCO, AlCl, HOOH, HOCl and glyoxal. The corresponding reference225

correlation energies are also obtained with CCSD(T)/def2-QZVP in PySCF7,8.226

The BH test data is taken from Ref. 26 and employed similar to the training reference227

correlation data points of the stretched diatomic systems. Lastly, the interaction energies228

of the formic acid dimer, and other systems of Fig. S16 from the S22x5 database27, are229

calculated analogously to RG18 at the CCSD(T)/CBS level of theory.230

(a) Water dimer (b) Benzene–HCN complex

(c) Formamide dimer (d) Ethene dimer

Fig. S16: Interaction (Int.) energy error curves similar to Fig. 1(e,top). Reference and
geometries taken from the S22x5 database27.
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231

S13. TRAINING AND TEST DATASETS OF MLS2@W4232

For the second MLS2 extrapolation test [MLS2@W4], we employed atomization energies233

from the W4-11 database25. For strictly positive features rs(r) and s(r) (see Sec. S6), we use234

a log(tanh(·)) preprocessing. Since the training data consist of atomization energies (inter-235

action), we used the MAE of an interaction-based GES (see Eq. S19) for the training. With236

140 training datapoints from W4-11, a randomly chosen subset of 10% (14 atomizations) was237

used for validation. The MAE calculation for all methods in Fig. 6 considered the following238

respective reaction energy datapoints: W4-11RE has 11247 total reactions28, from which239

4134 were determined to be SC, SIE4x4 has 16 reactions29, from which 2 were determined to240

be SC, BH76 has 76 reactions30, from which 13 were determined to be SC, BH76RC has 30241

reactions30, from which 1 was determined to be SC and RG18 has 18 reactions22, from which242

none was determined to be SC. For the DHs (ωB97M(2)31 and revDSD-PBEP86-D432), we243

used total energies from Ref. 32 to compute the MAEs for the individual datasets.244

Fig. S17: Dissociation energy curve of H+
2 . Shown are the energy results for ωB97M(2)31,

revDSD-PBEP86-D432 and the exact reference (HF = MLS2 = κMP2 = MP2) – all evaluated with
QChem33 6.2.2.
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Fig. S18: Energy MAEs (kcal mol−1) as in Fig. 6 for validation and training at different NN
architectures of the MLS2@W4 model. Each NN employs the same training and validation subsets
from W4-11, as detailed in Sec. S13. The MP2 and κMP2 results are shown for comparison.

Fig. S19: Energy MAEs (kcal mol−1) as in Fig. 6 with results from multiple ML runs. MAEs
of MLS2@W4 from 10 ML runs with different seed initializations (random). MLS2@W4 corresponds to the
ML run with the lowest MAE for W4-11.
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245

S14. ADDITIONAL PLOTS FOR ML(S)2 TRAINING DETAILS246

Fig. S20: Scatter plot of “exact” LES-based ML2 wc(r) weights, obtained by inverting Eq. 13, illustrating
the range of relevant wc values by employing the BH76 set. The weights are shown as a function of rs to
highlight energetically important regions (0 ≤ rs ≤ 6), even though rs is not used as an input in ML2, for
reasons discussed in the main text. The observed range of wc(r) values, mostly between 0 and 0.2, with
some slightly negative values close to zero shown in the inset, motivates the choice of a bounded (tanh)
activation function, whose application to the final output layer, with the resulting (−1, 1) output range,
readily contains the observed wc(r) range.
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