Supporting Information for "Restoring Size Consistency of Exchange-Correlation Functionals Constructed from the Adiabatic Connection"

E-mail:

Stefan Vuckovic,¹ Paola Gori-Giorgi,¹ Fabio Della Sala^{2,3} and Eduardo Fabiano^{2,3} s.vuckovic@vu.nl ¹Department of Theoretical Chemistry and Amsterdam Center for Multiscale Modeling, FEW, Vrije Universiteit, De Boelelaan 1083, 1081HV Amsterdam, The Netherlands ²Institute for Microelectronics and Microsystems (CNR-IMM), Via Monteroni, Campus Unisalento, 73100 Lecce, Italy ³ Center for Biomolecular Nanotechnologies @UNILE, Istituto Italiano di Tecnologia, Via Barsanti, I-73010 Arnesano, Italy February 27, 2018

Mathematical forms of the used interpolation models

In this section we give mathematical forms of the used interpolation models for the AC integrand.

Interaction-Strength Interpolation (ISI):^{1,2}

$$W_{\lambda}^{\text{ISI}} = W_{\infty}[\rho] + \frac{X[\rho]}{\sqrt{1 + Y[\rho]\lambda} + Z[\rho]},\tag{1}$$

where X, Y and Z are given by:

$$X = \frac{xy^2}{z^2}, \qquad Y = \frac{x^2y^2}{z^4}, \qquad Z = \frac{xy^2}{z^3} - 1$$
(2)

with $x = -2W'_0[\rho]$, $y = W'_{\infty}[\rho]$, and $z = W_0[\rho] - W_{\infty}[\rho]$.

Revised Interaction-Strength Interpolation (rev-ISI): 3

$$W_{\lambda}^{\text{rISI}} = \frac{\partial}{\partial\lambda} \left(a^{\text{rISI}}[\rho] \lambda \frac{b^{\text{rISI}}[\rho] \lambda}{\sqrt{1 + c^{\text{rISI}}[\rho] \lambda} + d^{\text{rISI}}[\rho]} \right), \tag{3}$$

with:

$$a^{\text{rISI}}[\rho] = W_{\infty}[\rho]$$

$$b^{\text{rISI}}[\rho] = -\frac{4W_{0}'[\rho]W_{\infty}'[\rho]^{2}}{(W_{0}[\rho] - W_{\infty}[\rho])^{2}}$$

$$c^{\text{rISI}}[\rho] = -\frac{8W_{0}'[\rho]^{2}W_{\infty}'[\rho]^{2}}{(W_{0}[\rho] - W_{\infty}[\rho])^{4}}$$

$$d^{\text{rISI}}[\rho] = -1 - \frac{4W_{0}'[\rho]W_{\infty}'[\rho]^{2}}{(W_{0}[\rho] - W_{\infty}[\rho])^{3}}.e \qquad (4)$$

Seidl-Perdew-Levy (SPL):^{4–6}

$$W_{\lambda}^{\rm SPL} = a^{\rm SPL}[\rho] + \frac{b^{\rm SPL}[\rho]}{\sqrt{1 + c^{\rm SPL}[\rho]\lambda}}$$
(5)

with:

$$a^{\text{SPL}}[\rho] = W_{\infty}[\rho]$$

$$b^{\text{SPL}}[\rho] = W_{0}[\rho] - W_{\infty}[\rho]$$

$$c^{\text{SPL}}[\rho] = -\frac{2W_{0}'[\rho]}{W_{0}[\rho] - W_{\infty}[\rho]}.$$
(6)

Liu-Burke (LB):^{6,7}

$$W_{\lambda}^{\rm LB} = a^{\rm LB}[\rho] + b^{\rm LB}[\rho] \left(\frac{1}{(1 + c^{\rm LB}[\rho]\lambda)^2} + \frac{1}{\sqrt{1 + c^{\rm LB}[\rho]\lambda}} \right),\tag{7}$$

with:

$$a^{\text{LB}}[\rho] = W_{\infty}[\rho]$$

$$b^{\text{LB}}[\rho] = \frac{W_0[\rho] - W_{\infty}[\rho]}{2}$$

$$c^{\text{LB}}[\rho] = -\frac{4W'_0[\rho]}{5(W_0[\rho] - W_{\infty}[\rho])}$$
(8)

Additional computational details

The point-charge-plus-continuum (PC) functional approximations to the strong coupling limit quantities are given by:¹

$$W_{\infty}[\rho] = \int \left[A\rho(\mathbf{r})^{4/3} + B \frac{|\nabla \rho(\mathbf{r})|^2}{\rho(\mathbf{r})^{4/3}} \right] d\mathbf{r}$$
(9)

$$W'_{\infty}[\rho] = \int \left[C\rho(\mathbf{r})^{3/2} + D \frac{|\nabla\rho(\mathbf{r})|^2}{\rho^{7/6}(\mathbf{r})} \right] d\mathbf{r}.$$
 (10)

The parameters A = -1.451, $B = 5.317 \times 10^{-3}$, and C = 1.535, are determined by the electrostatic arguments¹ and $D = -2.8957 \times 10^{-2}$ has been obtained by ensuring that the given approximation to $W'_{\infty}[\rho]$ is exact for the helium atom.³ All interaction energies reported in the letter have been corrected for the basis-set superposition error. In all calculations (except for Kr which used an aug-cc-pV5Z basis set⁸) we used a basis set constructed adding selected s, p, d, and f functions to the aug-cc-pVQZ basis set^{9,10} of each element. The list of additional functions is reported in Table S1.

Element	Basis	Basis function			
	type	Exponent			
Н	s	6.17937			
	s	0.46550			
	p	3.43000			
	d	4.45300			
He	s	19.0385			
	s	2.0880			
	p	16.1040			
	p	2.4980			
	d	12.4980			
Ν	s	13.8234			
	s	2.1950			
	p	2.1480			
	d	6.7170			
С	s	9.9641			
	s	1.6560			
	p	1.5040			
	d	4.5420			
0	s	18.3030			
	s	2.7760			
	p	2.7320			
	d	8.2530			
Ne	s	29.0669			
	s	4.3270			
	p	4.2810			
	d	13.3170			
Ar	s	1.7580			
	p	2.2450			
	d	4.7760			
	f	3.0582			

Table S1: List of additional (Gaussian) basis functions used for each element.

Results for the S66 test set

TABLE S2: Signed errors in kcal/mol for the S66 test for all the AC-based functionals. Systems 1-23 have H-bond interaction, systems 24-46 dispersion, system 47-66 mixed characters.

num.	system	rev-ISI	ISI	SPL	LB
1	Water-Water	-0.064	-0.095	-0.161	-0.146
2	Water-MeOH	-0.141	-0.164	-0.213	-0.175
3	Water-MeNH2	-0.193	-0.210	-0.245	-0.189
4	Water-Peptide	-0.259	-0.294	-0.370	-0.334
5	MeOH-MeOH	-0.222	-0.239	-0.276	-0.225
6	MeOH-MeNH2	-0.364	-0.373	-0.393	-0.302
7	MeOH-Peptide	-0.417	-0.442	-0.495	-0.432
8	MeOH-Water	-0.124	-0.150	-0.204	-0.179
9	MeNH2-MeOH	-0.273	-0.287	-0.315	-0.261
10	MeNH2-MeNH2	-0.376	-0.380	-0.390	-0.293
11	MeNH2-Peptide	-0.484	-0.487	-0.494	-0.380
12	MeNH2-Water	-0.210	-0.223	-0.253	-0.180
13	Peptide-MeOH	-0.327	-0.336	-0.355	-0.272
14	Peptide-MeNH2	-0.470	-0.466	-0.460	-0.338
15	Peptide-Peptide	-0.549	-0.557	-0.575	-0.467
16	Peptide-Water	-0.156	-0.179	-0.226	-0.192
17	Uracil-Uracil	-0.649	-0.687	-0.767	-0.685
18	Water-Pyridine	-0.198	-0.209	-0.234	-0.169
19	MeOH-Pyridine	-0.296	-0.298	-0.301	-0.206
20	AcOH-AcOH	-0.481	-0.556	-0.713	-0.686
21	AcNH2-AcNH2	-0.679	-0.724	-0.819	-0.755
22	AcOH-Uracil	-0.550	-0.610	-0.739	-0.693
23	AcNH2-Uracil	-0.595	-0.647	-0.756	-0.699
24	Benzene-Benzene	0.268	0.354	0.531	0.854
25	Pyridine-Pyridine	0.350	0.448	0.652	0.998
26	Uracil-Uracil	-0.725	-0.617	-0.394	-0.002
27	Benzene-Pyridine	0.300	0.392	0.583	0.919
28	Benzene-Uracil	-0.180	-0.065	0.173	0.567
29	Pyridine-Uracil	-0.125	-0.015	0.214	0.594
30	Benzene-Ethene	0.010	0.046	0.120	0.306
31	Uracil-Ethene	-0.240	-0.205	-0.134	0.046
32	Uracil-Ethyne	-0.082	-0.056	-0.003	0.152
33	Pyridine-Ethene	0.019	0.059	0.143	0.337
34	Pentane-Pentane	-0.931	-0.913	-0.876	-0.634
35	Neopentane-Pentane	-0.671	-0.663	-0.649	-0.486

36	Neopentane-Neopentane	-0.498	-0.500	-0.502	-0.394
37	Cyclopentane-Neopentane	-0.630	-0.622	-0.605	-0.449
38	Cyclopentane-Cyclopentane	-0.736	-0.721	-0.690	-0.502
39	Benzene-Cyclopentane	-0.265	-0.215	-0.111	0.152
40	Benzene-Neopentane	-0.233	-0.202	-0.138	0.061
41	Uracil-Pentane	-0.905	-0.844	-0.718	-0.416
42	Uracil-Cyclopentane	-0.763	-0.707	-0.591	-0.322
43	Uracil-Neopentane	-0.660	-0.625	-0.552	-0.348
44	Ethene-Pentane	-0.411	-0.409	-0.406	-0.281
45	Ethyne-Pentane	-0.148	-0.144	-0.134	-0.018
46	Peptide-Pentane	-0.902	-0.875	-0.817	-0.578
47	Benzene-Benzene	0.005	0.039	0.107	0.287
48	Pyridine-Pyridine	-0.022	0.010	0.077	0.255
49	Benzene-Pyridine	-0.002	0.029	0.093	0.268
50	Benzene-Ethyne	0.119	0.125	0.137	0.238
51	Ethyne-Ethyne	0.037	0.023	-0.005	0.021
52	Benzene-AcOH	-0.192	-0.175	-0.140	0.002
53	Benzene-AcNH2	-0.239	-0.234	-0.222	-0.106
54	Benzene-Water	-0.091	-0.094	-0.100	-0.020
55	Benzene-MeOH	-0.197	-0.177	-0.135	0.023
56	Benzene-MeNH2	-0.178	-0.155	-0.108	0.056
57	Benzene-Peptide	-0.218	-0.175	-0.086	0.141
58	Pyridine-Pyridine	-0.299	-0.299	-0.299	-0.206
59	Ethyne-Water	0.019	-0.010	-0.071	-0.071
60	Ethyne-AcOH	-0.156	-0.180	-0.229	-0.177
61	Pentane-AcOH	-0.642	-0.629	-0.603	-0.441
62	Pentane-AcNH2	-0.758	-0.742	-0.709	-0.524
63	Benzene-AcOH	-0.176	-0.141	-0.070	0.123
64	Peptide-Ethene	-0.346	-0.345	-0.344	-0.233
65	Pyridine-Ethyne	-0.040	-0.054	-0.086	-0.047
66	MeNH2-Pyridine	-0.243	-0.220	-0.173	-0.008

References

- Seidl, M.; Perdew, J. P.; Kurth, S. Density functionals for the strong-interaction limit. *Phys. Rev. A* 2000, *62*, 012502.
- (2) Fabiano, E.; Gori-Giorgi, P.; Seidl, M.; Della Sala, F. Interaction-Strength Interpolation Method for Main-Group Chemistry: Benchmarking, Limitations, and Perspectives. J. Chem. Theory Comput 2016, 12, 4885–4896.
- (3) Gori-Giorgi, P.; Vignale, G.; Seidl, M. Electronic zero-point oscillations in the stronginteraction limit of density functional theory. J. Chem. Theory Comput. 2009, 5, 743.
- (4) Seidl, M.; Perdew, J. P.; Levy, M. Strictly correlated electrons in density-functional theory. *Phys. Rev. A* 1999, 59, 51.
- (5) Seidl, M.; Gori-Giorgi, P.; Savin, A. Strictly correlated electrons in density-functional theory: A general formulation with applications to spherical densities. *Phys. Rev. A* 2007, 75, 042511.
- (6) Vuckovic, S.; Irons, T. J.; Savin, A.; Teale, A. M.; Gori-Giorgi, P. Exchange–correlation functionals via local interpolation along the adiabatic connection. J. Chem. Theory Comput. 2016, 12, 2598–2610.
- (7) Liu, Z. F.; Burke, K. Adiabatic connection in the low-density limit. *Phys. Rev. A* 2009, 79, 064503.
- (8) Wilson, A. K.; Woon, D. E.; Peterson, K. A.; Jr., T. H. D. Gaussian basis sets for use in correlated molecular calculations. IX. The atoms gallium through krypton. J. Chem. Phys. 1999, 110, 7667–7676.
- (9) Jr., T. H. D. Gaussian basis sets for use in correlated molecular calculations. I. The atoms boron through neon and hydrogen. J. Chem. Phys. 1989, 90, 1007–1023.

(10) Woon, D. E.; Jr., T. H. D. Gaussian basis sets for use in correlated molecular calculations. IV. Calculation of static electrical response properties. J. Chem. Phys. 1994, 100, 2975–2988.