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5 ABSTRACT: Møller−Plesset adiabatic connection (MPAC) theory
6 provides a powerful framework for constructing approximations to
7 wave function-based correlation energy, enabling modeling of non-
8 covalent interactions (NCIs) with near-CCSD(T) accuracy. We show
9 that approximate MPAC functionals consistently outperform MP2 and
10 dispersion-corrected DFT (DFT+DISP) across diverse systems, includ-
11 ing charged and charge-transfer complexes. MPAC functionals operate
12 holistically at the electronic level, require no heuristic dispersion
13 corrections, and achieve near-chemical accuracy even for abnormal
14 NCIs, cases where DFT+DISP errors exceed those of DFT. To further
15 improve MPAC for abnormal cases without compromising overall performance, we introduce MPAC25, a simple two-parameter
16 functional treating neutral and charged NCIs equally, as demonstrated on DES15K benchmarks. Overall, MPAC functionals
17 effectively describe a wide range of NCIs, including those beyond the reach of other methods, representing a significant step toward
18 predictive simulations of molecular interactions in complex environments and motivating further MPAC developments.

19 The fundamental role that noncovalent interactions
20 (NCIs) play in phenomena across chemical, condensed
21 matter, and biology1−7 has motivated the development of
22 electronic structure theory to improve their description,
23 traditionally within correlated wave function theory (WFT)8

24 and density functional theory (DFT)9,10 and, more recently,
25 machine-learning approaches.11 Accurate modeling of NCIs
26 requires, at the very least, capturing long-range correlation
27 effects such as van der Waals dispersion,12,13 while for more
28 complex systems, capturing the coupling between dispersion
29 and other effects (e.g., electrostatics, polarization) becomes
30 also important. As such, correlated wave function theory
31 (WFT) methods provide naturally accurate descriptions of
32 NCIs, offering physical insights and benchmarks for approx-
33 imate methods. Currently, coupled cluster (CC) theory with
34 single, double, and perturbative triple excitations, i.e., CCSD-
35 (T),14,15 serves as the “gold standard” ab initio method for NCI
36 energies in single-reference systems, when extrapolated to the
37 complete basis set (CBS) limit.16 However, the steep N( )7

38 scaling of CCSD(T) restricts its application to modest-sized
39 systems, whereas many-body perturbation theory (MBPT) and
40 modern DFT methods provide practical alternatives, although
41 each comes with its own strengths and limitations. Recent
42 developments in reduced-scaling CCSD(T) approximations
43 (e.g., LNO-CCSD(T)17,18 and DLPNO-CCSD(T)19,20) and
44 modern quantum Monte Carlo (MC) techniques (e.g., FN-
45 DMC21,22 and AF-QMC)23,24 enabled modeling of systems of
46 size beyond the reach of canonical CCSD(T), yet with

47comparable accuracy. This, in turn, has led to a better
48understanding of the accuracy of modern DFT methods (e.g.,
49range-separated hybrid and double hybrid functionals) and
50MBPT, particularly Møller−Plesset perturbation theory
51(MPn),25−27 for predicting NCI energies. Second-order
52Møller−Plesset perturbation theory [MP2; N( )5 ]28 captures
53some of the long-range correlation effects that semilocal DFT
54misses and has thus been widely used to study NCIs in
55molecular clusters. However, while MP2 often performs well
56for electrostatics-dominated systems,29 it often overestimates
57dispersion30−33 and underestimates polarizability,34 both
58crucial for accurately modeling a broad class of NCIs, including
59ion−π35 and parallel-displaced π−π interactions.36−38 Fur-
60thermore, it has been shown that the MPn perturbation series
61may diverge for large complexes, significantly limiting the
62applicability of MP2 for such systems.38 Several notable
63modifications and further developments of MBPT for
64simulating NCIs have been thoroughly reviewed,27,39 ranging
65from semiempirical improvements such as spin-component
66scaling (e.g., SCS-MP2, SOS-MP2)40,41 and regularization (κ-
67MP2),42−44 to formal NCI frameworks such as SAPT45 and
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68 related approaches.46 While ab initio methods for NCIs have
69 significantly advanced, the most widely used approach today
70 remains dispersion-corrected DFT (DFT+DISP).47−50 Several
71 DISP correction models have been developed, including the
72 popular DFT-Dx series (D2,51 D3,52 D4,53 and their
73 variants54−57), the many-body dispersion (MBD) family,,58−64

74 the exchange-dipole model (XDM).65 In contrast to empirical
75 DISP corrections, an alternative approach to modeling
76 dispersion is offered by nonlocal van der Waals functionals,66

77 such as VV1067 and its revised form rVV10.68 Nonlocal
78 correlation functionals play a critical role in capturing
79 dispersion in modern density functionals, including the
80 range-separated hybrid ωB97M-V.69

81 The widespread success of DFT+DISP effectively addresses
82 what was once recognized as a key challenge in DFT.48,70 For
83 many systems, this improved performance of DFT+DISP over
84 DFT is expected and is what we refer to here as normal systems.
85 However, there remain challenging NCI-bound systems for
86 which DFT+DISP either does not improve upon or even
87 worsens the base DFT results; we refer to these as abnormal
88 systems. For many abnormal systems, particularly charged
89 complexes, results worsen compared to base DFT regardless of
90 what specific DISP correction is added (e.g., D3 or XDM).71

91 In this context, a large-scale analysis of several DFT+DISP
92 methods across the DES15K72 with diverse NCIs,73 confirms
93 that charged molecular systems remain a challenge for DFT

94+DISP and for the field in general. Furthermore, abnormal
95DFT+DISP behavior has been reported for charge-transfer
96complexes,74 aqueous ions, such as those in the WATER2775

97data set, and even pure water.76−78 Identifying abnormal NCIs
98is also important for molecular simulation practices. For
99example, ref 79 found revPBE more accurate than revPBE-D3
100for alkali ion−water interactions. These challenges underscore
101the need for robust, yet affordable, methods that do not require
102heuristic DISP corrections and can treat normal and abnormal
103NCIs on equal footing.
104In this spirit, the recently developed Møller−Plesset
105adiabatic connection (MPAC)80,81 framework and resulting
106approximate functionals emerges as a promising approach for
107accurate modeling of NCIs.29,74,81,82 The scaling of MPAC
108functionals is governed by their Ec

MP2 component, but unlike
109double hybrids DFT,83 MPAC functionals approximate
110correlation energy within a WFT framework. This prompts
111the question: If MPAC functionals use Ec

MP2, do they naturally
112inherit the MP2 deficiencies for NCIs? They do not, as MPAC
113functionals use forms that mimic the features of the exact
114MPAC integrand that yields correlation energy within this
115framework, in which Ec

MP2 is used for what it truly represents;
116one-half of the initial slope of the underlying integrand. The
117MPAC functionals accurately capture dispersion at the
118foundational electronic level as they operate at the level of
119the MPAC integrand, and thus the need for any subsequent

Figure 1. Overview of the MPAC framework: (a) The AC curve for correlation energy Ec is shown: exact MPAC (black), MPAC functional (blue
dashed), and MP2 (gray dash-dot). (b) Schematic of the MPAC Hamiltonian H , mapping the noninteracting HF system (λ = 0) to the fully
interacting system (λ = 1), connecting nHF(r) to Ec

MPAC. (c) Average errors of MPAC and MP2 across various NCIs data sets. (d) MPAC
performance against MPn, DFT methods, and CCSD(T), with color-coded computational scaling: N4 (teal), N5 (blue), N5+ (magenta), with data
adapted from ref 74.
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120 dispersion corrections is eliminated (i.e., everything happens
121 holistically at the electronic level). Despite depending
122 nonlinearly on the ingredients, MPAC functionals are size
123 consistent for fragments with nondegenerate ground states,84

124 outperform MP2 and state-of-the-art DFT+DISP methods for
125 established NCI data sets, including π−π complexes such as
126 those in L785 and charge-transfer complexes such as those in
127 CT7.86

128 This perspective has two main objectives. First, we review
129 the successes of MPAC for NCIs through the lens of our
130 working definition of normal and abnormal NCIs. We then
131 show that, in addition to achieving high accuracy for normal
132 NCIs, MPAC functionals outperform both MP2 and DFT
133 +DISP in abnormal cases. Second, we show that a more careful
134 parametrization of the first-generation MPAC functional can
135 further improve accuracy for abnormal NCIs without
136 sacrificing performance on normal cases. Finally, our new
137 test results show that the reparameterized MPAC functional
138 achieves high accuracy on a representative DES15k subset,
139 including both neutral and the more challenging charged
140 complexes.
141 Møller−Plesset Adiabatic Connection Theory. Con-
142 sider a Hartree−Fock (HF) system that can be connected
143 through a continuous path to the physical system, through the
144 following Hamiltonian:

H T V V J K(1 )( )ee ext= + + + +145 (1)

146 where λ is the coupling constant, T̂, Vext, Vee, are the kinetic
147 energy, the external potential, and the electron repulsion
148 operators respectively, and J ̂ and K̂ represent the Coulomb and
149 exchange operators that depend on the HF orbitals. The
150 noninteracting Hartree−Fock system (λ = 0) and the physical
151 system (λ = 1) are connected via the MPAC integrand
152 W V J K V J K( ) ( )c, ee 0 ee 0= | + | | + | ,
153 which is distinct from the density-fixed DFT AC integrand.87

154 The exact WFT-based correlation energy Ec, defined as the
155 difference between the exact and HF energy, is obtained from
156 the MPAC integrand, Ec = ∫ 0

1Wc,λ dλ. Importantly, the MPAC
157 framework provides a powerful route for developing DFT-like
158 approximations that directly map HF densities nHF(r) to the
159 corresponding WFT-based correlation energy.80,88 As a result,
160 MPAC functionals inherently use HF densities rather than self-
161 consistent ones due to the fundamental nature of the theory
162 itself, and not merely as a practical heuristic (e.g., as in density-
163 corrected DFT76,89−92) to improve results. An important
164 feature of the MPAC is that, in contrast to DFT AC, the
165 electronic density is not fixed in the former, such that the
166 MPAC recovers the HF density nHF(r) at λ = 0 and the
167 physical density n(r) at λ = 1, and the small-λ expansion
168 Wc , 0

HF recovers Møller−Plesset perturbation theory, i.e. the
169 MPn series.80,93,94 A core concept of MPAC theory lies in the
170 curvature of the exact Wc,λ, which is crucial for capturing
171 dispersion as it has been revealed that dispersion typically
172 increases the curvature in the MPAC curve.29 This is illustrated

f1 173 schematically in Figure 1a, where it is also shown that MPn
174 approximates Wc,λ by a straight line, given by 2λEc

MP2. The
175 linear behavior of MP2 along the AC curve directly enables
176 assessing its reliability for NCIs via curvature strength from an
177 MPAC functional.29

178 As the MPAC functionals are designed by the interpolation
179 between the small and large λ limits of the MPAC, we also
180 note that in this large λ limit (distinct from the large-λ limit of

181DFT95−106), is governed by the functionals of nHF(r), with the
182Wc,λ→∞ being a leading order term. Gradient expansion
183approximations,81 size-consistency corrections (see below),84

184global interpolation schemes, and most recently the correlation
185energy densities have been investigated for the MPAC,88 as
186well as nonempirical strategies for constructing MPAC
187functionals.107

188As said and now illustrated in Figure 1b, a key strength of
189the exact MPAC features (e.g., its large-λ limit being a
190functional of nHF) is that they provide a rigorous framework for
191mapping nHF(r) to Ec, irrespective of the accuracy of nHF itself.
192Note that the WFT-based correlation energy obtained from an
193approximate MPAC functional will be denoted by Ec

MPAC, to
194distinguish it clearly from the exact Ec.
195Interaction Energies from MPAC Functionals. Consid-
196er a molecular system composed of N interacting fragments,
197with energy E given by the sum of the Hartree−Fock energy
198EHF and Ec

MPAC.

E N E N E N( ) ( ) ( )HF c
MPAC= + 199(2)

200Within the MPAC framework, Ec
MPAC(N) is approximated by a

201function NW( ( )) that nonlinearly depends on nonempirical
202quantitiesW(N), which are informed by the λ → 0 and λ → ∞
203limits of the underlying MPAC. The crucial NCI quantity is
204interaction energy Eint defined as the difference between the
205energy of the N fragment system and the sum of n individual
206fragments in their actual geometries. For the MPAC
207functionals, correlation interaction energy is evaluated as

E E N E n

N nW W

( ) ( )

( ( )) ( ( ))

n

N

i

n

N

i

c,int
MPAC

c
MPAC

1
c
MPAC

1

=

=

=

= 208(3)

209to guarantee size-consistency despite the nonlinear depend-
210ence of Ec

MPAC on the input ingredients.82,84 To define
211approximate functionals for Ec

MPAC in terms of W explicitly,
212we can write

E W W W W: ( , , , )c
MPAC

0 0= 213(4)

214where W0 = Ex
HF is the HF exchange energy and W0′ = 2Ec

MP2;
215note that it is possible to use only the opposite-spin
216component, Ec

MP2(os) for reduced N( )4 scaling.74 Both W0
217and W0′ govern the small-λ limit, while W∞,W∞′ depend on
218nHF(r)4/3 and |∇nHF(r)|2/nHF(r)4/3 and nHF(r)3/2 and
219|∇nHF(r)|2/nHF(r)7/6, respectively, and describe the λ → ∞
220limit typically approximated by the point-charge continuum
221(PC) approximation, as detailed in ref 82.
222Different MPAC approximations to Ec

MPAC vary in the level
223of information from eq 4 they incorporate and in their degree
224of empiricism. For example, the Seidl−Perdew−Levy (SPL)95

225successor, SPL2, introduced in ref 82 has shown very good
226results for NCI energies, especially for large NCI complexes
227(e.g., L785 data set). Additionally, a direct approximation to
228Ec

HF was introduced, known as the “Møller−Plesset Adiabatic
229Connection Functional 1” form or MPACF1, which will be
230discussed in detail later. The MPACF1 form represents a first-
231generation approximation explicitly designed from exact
232MPAC features, rather than being adapted from existing
233DFT-AC forms (e.g., SPL2). It provides a foundation for
234further developing minimally empirical MPAC functionals
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235 such as MPAC25 (see below) and more advanced forms like
236 the recently introduced HFAC24.107 Additionally, regulariza-
237 tion and spin-opposite component scaling led to the κ-F1 and
238 cosκos-SPL-2, which are MPAC functionals that outperform
239 MP2 in both accuracy and efficiency.74 The relative accuracy of
240 MPAC functionals compared to MP2 for different NCIs is
241 shown in Figure 1, and a comparison between MPAC
242 functionals to existing methods in terms scaling with N is
243 shown in Figure 1d.
244 Horizontally shaded regions denote bonding types. DFT
245 +DISP and CCSD(T) data was obtained from ref 108.
246 Identifying and Addressing Normal and Abnormal
247 NCIs. To compare MPAC and DFT+DISP performance for
248 NCIs, we recall our working definitions: an NCI complex is
249 normal if adding DISP corrections improves accuracy relative
250 to uncorrected DFT, and abnormal otherwise. As we shall see,
251 this distinction highlights the advantage of MPAC over DFT
252 +DISP, as the former provides a holistic framework capable of
253 accurately describing both classes of NCIs. Examples of
254 abnormal systems reported in the literature include charge-

255transfer complexes, charge−π, and charge−dipole interac-
256tions.74,108,109 To illustrate the difference between normal and
257abnormal cases when comparing MPAC and DFT+DISP, we
258use the B30 data set,110 which contains examples of both. The
259B30 set includes halogen, chalcogen, and pnictogen bonded
260 f2complexes, and Figure 2b−e shows errors for several DFT
261+DISP methods in decreasing order of the B30 delocalization
262error.111 From Figure 2, it is clear that including exact
263exchange, either through global (PBE0, B3LYP) or range-
264separated (LC-ωPBE) hybrids, improves B30 accuracy over
265GGAs (PBE). However, reducing delocalization error alone is
266insufficient to eliminate the abnormal behavior, as seen for
267PBE0+DISP and B3LYP+DISP. Figure 2 also shows that
268MPAC25 (built below) consistently outperforms hybrid DFT
269+DISP mehtods, the double-hybrid B2PLYP+D3(BJ) method,
270and MP2 across the entire B30 set. Remarkably, MPAC25 is
271the only method predicting B30 interaction energies within
272∼1% (on average) of the CCSD(T) references.
273To better understand the benefit MPAC functionals offer
274over DFT+DISP for abnormal cases, we explore the relation-

Figure 2. Proof of concept for abnormal NCIs using B30 as a case study: (a) Representative halogen (h), chalcogen (c), and pnictogen (p) bonded
complexes. (b−e) Interaction energy errors (kcal/mol) for various functionals with/without dispersion: PBE, PBE0, B3LYP, and LC-ωPBE. Across
all cases, adding dispersion worsens performance relative to the bare functional. MPAC25 (blue), MP2 (gray) and the double-hyrbid functional
B2PLYP-D3(BJ) (purple) are shown for comparison.
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275 ship between DFT+DISP methods and normal−abnormal
276 behavior using the inequality linking the two errors,
277 |ΔEint

DFT+DISP| ≤ ξ|ΔEint
DFT|, where ξ < ξc indicates normal cases

278 for an appropriate value ξc. With this inequality and without
279 attempting to set a strict boundary, we roughly classify B30
280 cases as normal and abnormal, focusing on the trends robust to
281 variations in ξ, the base DFT, and the DISP correction. For

f3 282 example, Figure 3a counts the number of normal and abnormal
283 B30 complexes based on the inequality above, at ξ = 1 and ξ =
284 1.5 and with PBE-XDM. We can see that PBE-XDM performs
285 worse than PBE alone for 24 out of 30 complexes (left); in 11
286 of which, the error of PBE-XDM is over 1.5 times larger than
287 the PBE error (right).
288 On the other hand, Figure 3b shows that LC-ωPBE+D3(BJ)
289 yields only 5 abnormal cases (all halogen-bonded). However,
290 for these 5 cases, even for LC-ωPBE+D3(BJ), the best-
291 performing DFT+DISP method here with lower delocalization
292 error than PBE, the error still exceeds 150% of the base LC-
293 ωPBE error. This analysis highlights how, from semilocal to
294 range-separated hybrid functionals, charged halogen-bonded
295 complexes remain abnormal. While MPAC25 predicts ∼86%
296 of B30 within chemical accuracy, we note that 4 halogen-
297 bonded systems fall outside of this threshold, confirming that
298 these abnormal cases are the most challenging NCIs in the set,
299 independently of the method.
300 Still, the overall high accuracy of MPAC25 for B30 is evident
301 from its mean absolute error (MAE) being below 0.5 kcal/mol,

f4 302 as shown in Figure 4 for several methods, plotted from the
303 lowest MAE to the highest MAE. The 3 most accurate
304 methods are MPAC functionals (MPAC25, SPL2, and

305MPACF1) and provide comparable accuracy in a range of
306∼0.2 kcal/mol. The MPAC functionals are followed by the

Figure 3. Bar plot of reaction counts in B30 data set satisfying |ΔEint
DFT+DISP| ≤ ξ|ΔEint

DFT| for two DFT+DISP methods and different ξ values: (a)
PBE+XDM, the worst performer for B30, and (b) LC-ωPBE-D3(BJ), the best performer considered in this work. The number of normal cases is
associated with the green bars, while the abnormal cases are shown in purple.

Figure 4. Performance on the B30 data set: mean absolute error
(MAE) in kcal/mol for several electronic structure methods, ranked
from lowest (MPAC25) to highest (PBE0-XDM).
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307 range-separated meta-GGA ωB97M-V,69 and double hybrids
308 such as B2PLYP-D3(BJ).112

309 MPAC25 Model. So far, we have shown the results for
310 MPAC25, which we obtain in this perspective from the
311 MPACF1 correlation energy form

E g g
h d d

d h d d d
:

( , ) 1

1 ( , ) 1
c ,

, , ,
,

1 2

1
2 ,

1 2
4

2
2

i

k

jjjjjjj
y

{

zzzzzzz= + [ + ]
+ + [ ] +

312 (5)

313 w h e r e t h e f u n c t i o n a l s g α , β = −W c , ∞
α , β a n d

314 h d d E d W E d W( , ) ( 2 )( 2 )c c
,

1 2 c
MP2

1
2

,
,

c
MP2

2
4

,
, 1= + a s

315 in ref 82. In addition, Wc,∞
α,β is approximated as Wc,∞

α,β =
316 αWc,∞

DFT + βEx
HF[{ϕi

HF}], following the relation in the large-λ
317 limit Wc,∞

α,β ≤ Wc,∞
DFT, as demonstrated in ref 81. Here, we obtain

318 MPAC25 by reparameterizing the original MPACF1 func-
319 tional,82 resulting in an even more balanced description of
320 normal and abnormal NCIs, as detailed below.
321 Next, we discuss the relationship between MPACF1 and
322 MPAC25 in terms of generalizability across diverse NCIs. eq 5
323 involves parameters α, β, d1, d2, which can be fitted (see ref
324 74). However, imposing the physical constraint α = β = 1,
325 which ensures recovery of the uniform electron gas as λ → ∞,
326 leaves only d1 and d2 to be fitted. Another advantage of the
327 MPACF1 form in eq 5 is that it exhibits the correct large-λ
328 asymptotic behavior, unlike the more empirical SPL2 func-
329 tional and its variants. By analyzing the parameter robustness
330 of MPACF1, we show that the MPAC25 parameters (α = β =
331 1, d1 = 1.1, d2 = 0.6) improve over the original parametrization.

f5 332 Figure 5a shows the MAE landscape as a function of d1 and
333 d2 for the S22 data set, originally used to fit MPACF1 and
334 other MPAC functionals. We identify two regions of interest in

335this landscape: V1, associated with MPAC25 (orange star), and
336V2, associated with the original MPACF1 (red circle).
337MPACF1 parameters (d1 = 0.294, d2 = 0.934) were
338originally chosen by minimizing the MAE on S22.82 Here,
339we investigate whether parameters located in region V1 provide
340improved generalizability across diverse NCIs without
341significantly sacrificing accuracy on the original S22 training
342set. Notably, the minimum in V2 (red circle) achieves a slightly
343lower MAE for S22 compared to the MPAC25 (orange star in
344V1). However, the curvature around the MPAC25 parameters
345(orange star, V1) in the MAE landscape (Figure 5a and b) is
346significantly flatter than around the original MPACF1
347parameters (red circle, V2). Indeed, refitting parameters with
348minimal curvature constraints gives an MAE of 0.20 kcal/mol
349on S22, only 0.01 kcal/mol above the original MPACF1MAE
350(0.19 kcal/mol).82 Further details are provided in the
351Supporting Information. Importantly, the flatter landscape
352around the orange star indicates improved generalizability113

353beyond the S22 training set. This is confirmed by Figure 5c,
354which shows the MAE landscape for the NCCE31 and B30
355data sets, both containing normal and abnormal NCIs. For
356NCCE31, the MAE landscape is similar to that of S22 (Figure
3575b), with MPAC25 and MPACF1 achieving MAEs of 0.25 and
3580.33 kcal/mol, respectively. For B30, the MAE landscape
359notably changes, placing MPACF1 (red circle) at the edge of
360the sharper V2 region. Finally, we isolate the abnormal cases in
361the last panel of Figure 5c, combining B30(ab) and CT7 sets
362(CT7 is Charge Transfer 7 in NCCE31). Interestingly, this is
363where the MAE landscape and accuracy of the two models
364(MPAC25 in V1 and MPACF1 in V2) differs most
365substantially. Namely, for these abnormal cases, only
366MPAC25 achieves chemical accuracy with an MAE of 0.90

Figure 5. (a) Surface representation of [d1, d2] parameter space for the MPACF1 functional with the MAE (kcal/mol) associated with the S22 data
set along the z axis and (b) detailed heatmap of [d1d2] dependence. Our proposed parameters are represented by the orange star in well V1, while
the red dot represents the parameters from ref 82 in well V2. (c) Heatmaps of [d1, d2] parameter space for different test data sets: NCCE31, S66×8,
B30, and “abnormal” complexes in B30, as identified in the previous analysis.
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367 kcal/mol, improving over MPACF1 by 0.37 kcal/mol (1.27
368 kcal/mol).
369 These analyses demonstrate that minimally empirical MPAC
370 functionals can be improved by leveraging parameter regions
371 with flatter error landscapes, such as V1. Such flatter regions
372 indicate greater robustness and generalizability beyond the
373 original S22 training set, thus providing improved accuracy for
374 abnormal NCIs without sacrificing performance on normal
375 cases.
376 Performance of MPAC for DES15K Subset. After
377 reviewing MPAC performance for NCIs and introducing
378 MPAC25 to improve treatment of abnormal cases, we now
379 evaluate MPAC functionals against an additional benchmark.
380 Specifically, we construct a representative subset from the
381 DES15K data set, to include diverse interaction types. Our
382 DES15K subset includes 1352 molecular dimers, where 853
383 (∼60%) are neutral and 499 (∼40%) are charged nonmetal
384 complexes. MP2 and MPAC energies have been computed by
385 extrapolation to the complete basis set limit (see Computa-
386 tional Details). The MAES of the DFT+DISP methods for our
387 DES15K subset are comparable to those reported for the full
388 DES15K data set,73 despite the fact that the former comprises
389 only a small fraction (∼10%) of the latter.

f6 390 Figure 6a shows the MAEs (kcal/mol) for several methods,
391 ordered from lowest (MPAC25) to highest (PBE0-XDM).
392 Notably, MPAC-based methods (MPAC25, MPACF1, SPL2,
393 and MPACF1[α, β]) achieve the four lowest MAEs across the
394 1352 complexes, with MPAC25 as the best performing method
395 (MAE ∼ 0.30 kcal/mol). All MPAC functionals considered
396 here achieve MAEs below 0.60 kcal/mol, outperforming the
397 best DFT+DISP method tested (hybrid B86bPBE25X-XDM,
398 MAE = 0.62 kcal/mol). Finally, MPAC25 achieves less than
399 half the MAE of MP2 for the DES15K subset, consistent with
400 previous benchmarks showing large improvements of MPAC
401 over MP2 for NCIs.74 In addition to the MAEs (Figure 6a),

t1 402 Table 1 shows RMSEs for all methods, separately for neutral
403 (825) and charged (527) subsets (additional statistics are in
404 the Supporting Information), confirming that MPAC25
405 consistently outperforms MPACF1, especially for charged
406 complexes (by ∼0.25 kcal/mol), without sacrificing accuracy
407 for neutral systems.
408 Overall, these results establish MPAC25 as a promising and
409 robust “workhorse” functional for quantum-chemical simu-
410 lations of NCIs, demonstrating improved accuracy over the 4-
411 parameter SPL2 on our DES15K subset, while also having a
412 stronger physical foundation derived from the exact MPAC
413 features. Finally, following ref 74, MPAC25 can be made more

414efficient by spin-opposite component scaling114 (cos-
415MPAC25), as illustrated in the Supporting Information.
416Summary and Outlook. In summary, in this perspective,
417we reviewed and extended functionals based on the Møller−
418Plesset adiabatic connection theory focusing on their perform-
419ance for modeling NCIs. MPAC functionals approximate wave
420function-based correlation energy by interpolating between the
421small- and large-λ limits of MPAC. As such, the inherent
422advantage of MPAC functionals for modeling NCIs is that they
423operate entirely at the electronic level, requiring no heuristic
424corrections to capture dispersion. Second, unlike double
425hybrids, MPAC functionals do not rely on error cancellations
426between exact exchange, MP2 correlation, and their semilocal
427counterparts. Instead, they incorporate exact exchange and
428MP2 correlation in full as input quantities defining their small-
429λ limit. As a result of these advantages, MPAC functionals
430consistently provide near-CCSD(T) accuracy for diverse NCIs,
431with major improvements over MP2 and state-of-the-art
432dispersion-corrected DFT (DFT+DISP), particularly for
433abnormal NCIs where DFT+DISP exhibits large inaccuracies.
434We have also introduced MPAC25, a minimally empirical
435functional that accurately models charged and neutral, as well
436as normal and abnormal NCIs within a unified framework,
437which can be further improved by combining specific machine-
438learning techniques115,116 and MPAC correlation energy
439densities.88

440Practical MPAC applications have thus far focused on
441relatively small systems, highlighting the importance of
442extending MPAC to larger N-body systems, motivated by
443recent studies revealing limitations of DFT- and MP2-based
444approaches for such systems.77,78,109,117−120 For example, the

Figure 6. Analysis of a subset from the D.E. Shaw 15K (DES15K) database72 with MPAC25 and other methods. (a) MAE (kcal/mol) is shown for
9 methods from MPAC25 (light yellow) to PBE0-D3(BJ) (blood red), showing that MPAC25 is the best performer across DES15K structures, and
highlights that MPAC models offer similar performance (MAE ≤ 0.6 kcal/mol), surpassing MP2 and a variety of dispersion corrected hybrid
functionals and MP2. The MAES for all DFT methods were obtained from ref 73. (b) Histogram of errors is shown for MPAC25 (blue) and
MPACF1 (red) for 1352 complexes, of which 853 are neutral and 499 are charged.

Table 1. Root Mean Square Error (RMSE) in kcal/mol for
Different Methods in Full, Charged, and Neutral Setsa

method full charged neutral

PBE0-D3(BJ) 1.30 2.04 0.80
PBE0-D4 1.26 1.96 0.79
PBE0-XDM 1.18 1.80 0.77
MP2 1.27 1.34 1.22
B86bPBE25X-XDM 1.01 1.57 0.62
MPACF1[α, β] 0.79 0.75 0.82
SPL2 0.51 0.48 0.53
MPACF1 0.56 0.69 0.47
MPAC25 0.45 0.44 0.47

aThe lowest value in each column is in bold. Errors reported with
respect to CCSD(T)/CBS reference energies.72.
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445 performance of MPAC for complex solute−solvent systems
446 relevant to chemistry and biochemistry121 is yet to be explored.
447 Furthermore, extending MPAC to N-body systems will enable
448 data-driven many-body122 and MPAC-based machine-learning
449 potentials,123 facilitating accurate condensed-phase simulations
450 on the nanosecond time scale. This would represent a crucial
451 advance in ab initio simulations, though implementing MPAC
452 forces remains an essential step to realize this goal.
453 Computational Details. The data associated with the
454 MPAC ingredients W for the S22, NCCE31 and B30 data sets
455 were obtained from ref 74. The DFT(+DISP) data for the B30
456 analysis was obtained from refs 108, 124, and 125. The
457 DFT(+DISP) data for the DES15K analysis was obtained from
458 ref 73. In relation to DES15K, all MP2 calculations employed
459 the resolution of identity approximation as implemented in
460 TURBOMOLE,126 and were approximated in the complete
461 basis set limit. The complete basis set limit was estimated using
462 2-point extrapolation with the aug-cc-pVDZ and aug-cc-pVTZ
463 basis sets (D/T). Finally, the Boys−Bernardi counterpoise
464 correction was applied to account for basis set superposition
465 error. Further computational details can be found in the
466 Supporting Information.
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